BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25680931)

  • 1. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system.
    Wang Y; Zhang ZT; Seo SO; Choi K; Lu T; Jin YS; Blaschek HP
    J Biotechnol; 2015 Apr; 200():1-5. PubMed ID: 25680931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 3. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example.
    Zhang ZT; Jiménez-Bonilla P; Seo SO; Lu T; Jin YS; Blaschek HP; Wang Y
    Methods Mol Biol; 2018; 1772():297-325. PubMed ID: 29754236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    ACS Synth Biol; 2016 Jul; 5(7):721-32. PubMed ID: 27115041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii.
    Diallo M; Hocq R; Collas F; Chartier G; Wasels F; Wijaya HS; Werten MWT; Wolbert EJH; Kengen SWM; van der Oost J; Ferreira NL; López-Contreras AM
    Methods; 2020 Feb; 172():51-60. PubMed ID: 31362039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a.
    Patinios C; de Vries ST; Diallo M; Lanza L; Verbrugge PLJVQ; López-Contreras AM; van der Oost J; Weusthuis RA; Kengen SWM
    Sci Rep; 2023 Jun; 13(1):10153. PubMed ID: 37349508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development in molecular genetic manipulation of solventogenic clostridia].
    Gu Y; Yang S; Jiang W
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1133-45. PubMed ID: 24364350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system.
    Wang S; Hong W; Dong S; Zhang ZT; Zhang J; Wang L; Wang Y
    Clin Microbiol Infect; 2018 Oct; 24(10):1095-1099. PubMed ID: 29604353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii.
    Li Q; Chen J; Minton NP; Zhang Y; Wen Z; Liu J; Yang H; Zeng Z; Ren X; Yang J; Gu Y; Jiang W; Jiang Y; Yang S
    Biotechnol J; 2016 Jul; 11(7):961-72. PubMed ID: 27213844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423.
    Máté de Gérando H; Wasels F; Bisson A; Clement B; Bidard F; Jourdier E; López-Contreras AM; Lopes Ferreira N
    BMC Genomics; 2018 Apr; 19(1):242. PubMed ID: 29636009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.
    Waaijers S; Boxem M
    Methods; 2014 Aug; 68(3):381-8. PubMed ID: 24685391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.
    Hong W; Zhang J; Cui G; Wang L; Wang Y
    ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production.
    Seo SO; Lu T; Jin YS; Blaschek HP
    J Biotechnol; 2021 Mar; 329():49-55. PubMed ID: 33556425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution.
    Shi Y; Li YX; Li YY
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S9. PubMed ID: 21172059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.