These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25681608)

  • 1. Dynamic frailty models based on compound birth-death processes.
    Putter H; van Houwelingen HC
    Biostatistics; 2015 Jul; 16(3):550-64. PubMed ID: 25681608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference?
    Balan TA; Putter H
    Stat Med; 2019 Aug; 38(18):3405-3420. PubMed ID: 31050028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goodness-of-fit tests for the frailty distribution in proportional hazards models with shared frailty.
    Geerdens C; Claeskens G; Janssen P
    Biostatistics; 2013 Jul; 14(3):433-46. PubMed ID: 23274285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A joint frailty model to estimate the recurrence process and the disease-specific mortality process without needing the cause of death.
    Belot A; Rondeau V; Remontet L; Giorgi R;
    Stat Med; 2014 Aug; 33(18):3147-66. PubMed ID: 24639014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of different bivariate correlated frailty models and estimation strategies.
    Wienke A; Arbeev KG; Locatelli I; Yashin AI
    Math Biosci; 2005 Nov; 198(1):1-13. PubMed ID: 16185720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shared frailty models for recurrent events and a terminal event.
    Liu L; Wolfe RA; Huang X
    Biometrics; 2004 Sep; 60(3):747-56. PubMed ID: 15339298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo method for Bayesian inference in frailty models.
    Clayton DG
    Biometrics; 1991 Jun; 47(2):467-85. PubMed ID: 1912256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum penalized likelihood estimation in a gamma-frailty model.
    Rondeau V; Commenges D; Joly P
    Lifetime Data Anal; 2003 Jun; 9(2):139-53. PubMed ID: 12735493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On robustness of marginal regression coefficient estimates and hazard functions in multivariate survival analysis of family data when the frailty distribution is mis-specified.
    Hsu L; Gorfine M; Malone K
    Stat Med; 2007 Nov; 26(25):4657-78. PubMed ID: 17348081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic frailty model for multivariate survival data.
    Yue H; Chan KS
    Biometrics; 1997 Sep; 53(3):785-93. PubMed ID: 9333346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling.
    Farcomeni A; Viviani S
    Stat Med; 2015 Mar; 34(7):1199-213. PubMed ID: 25488110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A frailty model approach for regression analysis of multivariate current status data.
    Chen MH; Tong X; Sun J
    Stat Med; 2009 Nov; 28(27):3424-36. PubMed ID: 19739240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical likelihood inference on clustered competing risks data.
    Christian NJ; Ha ID; Jeong JH
    Stat Med; 2016 Jan; 35(2):251-67. PubMed ID: 26278918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival models induced by zero-modified power series discrete frailty: Application with a melanoma data set.
    Molina KC; Calsavara VF; Tomazella VD; Milani EA
    Stat Methods Med Res; 2021 Aug; 30(8):1874-1889. PubMed ID: 33955295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A relaxation of the gamma frailty (Burr) model.
    Perperoglou A; van Houwelingen HC; Henderson R
    Stat Med; 2006 Dec; 25(24):4253-66. PubMed ID: 16921549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A joint frailty model for survival and gap times between recurrent events.
    Huang X; Liu L
    Biometrics; 2007 Jun; 63(2):389-97. PubMed ID: 17688491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible class of generalized joint frailty models for the analysis of survival endpoints.
    Chauvet J; Rondeau V
    Stat Med; 2023 Apr; 42(8):1233-1262. PubMed ID: 36775273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian semiparametric dynamic frailty models for multiple event time data.
    Pennell ML; Dunson DB
    Biometrics; 2006 Dec; 62(4):1044-52. PubMed ID: 17156278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of nested frailties into semiparametric multi-state models.
    Rotolo F; Rondeau V; Legrand C
    Stat Med; 2016 Feb; 35(4):609-21. PubMed ID: 26381148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Weibull regression model with gamma frailties for multivariate survival data.
    Sahu SK; Dey DK; Aslanidou H; Sinha D
    Lifetime Data Anal; 1997; 3(2):123-37. PubMed ID: 9384618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.