BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25681655)

  • 21. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products.
    Luo Z; Huang W; Yu W; Tang S; Wei K; Yu Y; Xu L; Yin H; Niu J
    Chemosphere; 2023 Dec; 343():140267. PubMed ID: 37758090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq.
    Krivoshiev BV; Beemster GTS; Sprangers K; Cuypers B; Laukens K; Blust R; Husson SJ
    Toxicol In Vitro; 2018 Feb; 46():178-188. PubMed ID: 29024780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).
    Ma Z; Yu Y; Tang S; Liu H; Su G; Xie Y; Giesy JP; Hecker M; Yu H
    Aquat Toxicol; 2015 Dec; 169():196-203. PubMed ID: 26562049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of in vitro metabolites of TM-2, a potential antitumor drug, in rat, dog and human liver microsomes using liquid chromatography/tandem mass spectrometry.
    Men L; Zhao Y; Lin H; Yang M; Liu H; Tang X; Yu Z
    Rapid Commun Mass Spectrom; 2014 Oct; 28(20):2162-70. PubMed ID: 25178720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry.
    Van den Eede N; Neels H; Jorens PG; Covaci A
    J Chromatogr A; 2013 Aug; 1303():48-53. PubMed ID: 23849782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics.
    Wang L; Christopher LJ; Cui D; Li W; Iyer R; Humphreys WG; Zhang D
    Drug Metab Dispos; 2008 Sep; 36(9):1828-39. PubMed ID: 18556438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of the Flame Retardant 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) in Vitro by Human Liver Microsomes.
    Nguyen KH; Abou-Elwafa Abdallah M; Moehring T; Harrad S
    Environ Sci Technol; 2017 Sep; 51(18):10511-10518. PubMed ID: 28846412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategy of using microsome-based metabolite production to facilitate the identification of endogenous metabolites by liquid chromatography mass spectrometry.
    Clements M; Li L
    Anal Chim Acta; 2011 Jan; 685(1):36-44. PubMed ID: 21168549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of two chloramphenicol glucuronides from the in vitro glucuronidation of chloramphenicol in human liver microsomes.
    Chen M; Howe D; Leduc B; Kerr S; Williams DA
    Xenobiotica; 2007 Sep; 37(9):954-71. PubMed ID: 17896323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of sanguinarine in human and in rat: characterization of oxidative metabolites produced by human CYP1A1 and CYP1A2 and rat liver microsomes using liquid chromatography-tandem mass spectrometry.
    Deroussent A; RĂ© M; Hoellinger H; Cresteil T
    J Pharm Biomed Anal; 2010 Jul; 52(3):391-7. PubMed ID: 19804952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro Phase I metabolism of newly identified plasticizers using human liver microsomes combined with high resolution mass spectrometry and based on non-targeted and suspect screening workflows.
    Christia C; da Silva KM; Poma G; van Nuijs ALN; Covaci A
    Toxicol Lett; 2022 Mar; 356():33-40. PubMed ID: 34896239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.
    Erratico CA; Szeitz A; Bandiera SM
    Chem Res Toxicol; 2013 May; 26(5):721-31. PubMed ID: 23537005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust.
    Van den Eede N; Dirtu AC; Neels H; Covaci A
    Environ Int; 2011 Feb; 37(2):454-61. PubMed ID: 21176966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organophosphorus flame retardants and plasticizers in air from various indoor environments.
    Marklund A; Andersson B; Haglund P
    J Environ Monit; 2005 Aug; 7(8):814-9. PubMed ID: 16049584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening of organophosphorus compounds and their distribution in various indoor environments.
    Marklund A; Andersson B; Haglund P
    Chemosphere; 2003 Dec; 53(9):1137-46. PubMed ID: 14512118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro metabolism of alisol A and its metabolites' identification using high-performance liquid chromatography-mass spectrometry.
    Yu Y; Liu Z; Ju P; Zhang Y; Zhang L; Bi K; Chen X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 941():31-7. PubMed ID: 24184833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [In vitro comparison of thienorphine metabolism in liver microsomes of human, Beagle dog and rat].
    Deng JT; Zhuang XM; Li H
    Yao Xue Xue Bao; 2010 Jan; 45(1):98-103. PubMed ID: 21351457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-injection workflow for a liquid chromatography/LTQ-Orbitrap system to complete in vivo biotransformation characterization: demonstration with buspirone metabolite identification.
    Li AC; Ding J; Jiang X; Denissen J
    Rapid Commun Mass Spectrom; 2009 Sep; 23(18):3003-12. PubMed ID: 19681099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation.
    Engel G; Hofmann U; Heidemann H; Cosme J; Eichelbaum M
    Clin Pharmacol Ther; 1996 Jun; 59(6):613-23. PubMed ID: 8681486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.