BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25681747)

  • 1. Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells.
    Urbinati F; Hargrove PW; Geiger S; Romero Z; Wherley J; Kaufman ML; Hollis RP; Chambers CB; Persons DA; Kohn DB; Wilber A
    Exp Hematol; 2015 May; 43(5):346-351. PubMed ID: 25681747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Therapy for Sickle Cell Disease: A Lentiviral Vector Comparison Study.
    Urbinati F; Campo Fernandez B; Masiuk KE; Poletti V; Hollis RP; Koziol C; Kaufman ML; Brown D; Mavilio F; Kohn DB
    Hum Gene Ther; 2018 Oct; 29(10):1153-1166. PubMed ID: 30198339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin.
    Pestina TI; Hargrove PW; Jay D; Gray JT; Boyd KM; Persons DA
    Mol Ther; 2009 Feb; 17(2):245-52. PubMed ID: 19050697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.
    Breda L; Casu C; Gardenghi S; Bianchi N; Cartegni L; Narla M; Yazdanbakhsh K; Musso M; Manwani D; Little J; Gardner LB; Kleinert DA; Prus E; Fibach E; Grady RW; Giardina PJ; Gambari R; Rivella S
    PLoS One; 2012; 7(3):e32345. PubMed ID: 22479321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The new self-inactivating lentiviral vector for thalassemia gene therapy combining two HPFH activating elements corrects human thalassemic hematopoietic stem cells.
    Papanikolaou E; Georgomanoli M; Stamateris E; Panetsos F; Karagiorga M; Tsaftaridis P; Graphakos S; Anagnou NP
    Hum Gene Ther; 2012 Jan; 23(1):15-31. PubMed ID: 21875313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer.
    Wilber A; Hargrove PW; Kim YS; Riberdy JM; Sankaran VG; Papanikolaou E; Georgomanoli M; Anagnou NP; Orkin SH; Nienhuis AW; Persons DA
    Blood; 2011 Mar; 117(10):2817-26. PubMed ID: 21156846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-globin gene transfer to human bone marrow for sickle cell disease.
    Romero Z; Urbinati F; Geiger S; Cooper AR; Wherley J; Kaufman ML; Hollis RP; de Assin RR; Senadheera S; Sahagian A; Jin X; Gellis A; Wang X; Gjertson D; Deoliveira S; Kempert P; Shupien S; Abdel-Azim H; Walters MC; Meiselman HJ; Wenby RB; Gruber T; Marder V; Coates TD; Kohn DB
    J Clin Invest; 2013 Jul; 123(8):3317-30. PubMed ID: 23863630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mass spectrometry assay for detection of endogenous and lentiviral engineered hemoglobin in cultured cells and sickle cell disease mice.
    Wang X; McKillop WM; Dlugi TA; Faber ML; Alvarez-Argote J; Chambers CB; Wilber A; Medin JA
    J Gene Med; 2024 Jan; 26(1):e3567. PubMed ID: 37455676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel BaEVRless-Pseudotyped γ-Globin Lentiviral Vector Drives High and Stable Fetal Hemoglobin Expression and Improves Thalassemic Erythropoiesis
    Drakopoulou E; Georgomanoli M; Lederer CW; Kleanthous M; Costa C; Bernadin O; Cosset FL; Voskaridou E; Verhoeyen E; Papanikolaou E; Anagnou NP
    Hum Gene Ther; 2019 May; 30(5):601-617. PubMed ID: 30324804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders.
    Uchida N; Hsieh MM; Raines L; Haro-Mora JJ; Demirci S; Bonifacino AC; Krouse AE; Metzger ME; Donahue RE; Tisdale JF
    Nat Commun; 2019 Oct; 10(1):4479. PubMed ID: 31578323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts.
    Wilber A; Tschulena U; Hargrove PW; Kim YS; Persons DA; Barbas CF; Nienhuis AW
    Blood; 2010 Apr; 115(15):3033-41. PubMed ID: 20190190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number.
    Persons DA; Hargrove PW; Allay ER; Hanawa H; Nienhuis AW
    Blood; 2003 Mar; 101(6):2175-83. PubMed ID: 12411297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34
    Drakopoulou E; Georgomanoli M; Lederer CW; Panetsos F; Kleanthous M; Voskaridou E; Valakos D; Papanikolaou E; Anagnou NP
    Viruses; 2022 Dec; 14(12):. PubMed ID: 36560719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells.
    Levasseur DN; Ryan TM; Pawlik KM; Townes TM
    Blood; 2003 Dec; 102(13):4312-9. PubMed ID: 12933581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient in vivo beta-globin production after lentiviral gene transfer to hematopoietic stem cells in the nonhuman primate.
    Hayakawa J; Ueda T; Lisowski L; Hsieh MM; Washington K; Phang O; Metzger M; Krouse A; Donahue RE; Sadelain M; Tisdale JF
    Hum Gene Ther; 2009 Jun; 20(6):563-72. PubMed ID: 19222366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small β-Globin Locus Control Region Elements.
    Morgan RA; Unti MJ; Aleshe B; Brown D; Osborne KS; Koziol C; Ayoub PG; Smith OB; O'Brien R; Tam C; Miyahira E; Ruiz M; Quintos JP; Senadheera S; Hollis RP; Kohn DB
    Mol Ther; 2020 Jan; 28(1):328-340. PubMed ID: 31628051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease.
    Ramadier S; Chalumeau A; Felix T; Othman N; Aknoun S; Casini A; Maule G; Masson C; De Cian A; Frati G; Brusson M; Concordet JP; Cavazzana M; Cereseto A; El Nemer W; Amendola M; Wattellier B; Meneghini V; Miccio A
    Mol Ther; 2022 Jan; 30(1):145-163. PubMed ID: 34418541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of an anti-sickling beta-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells.
    Oh IH; Fabry ME; Humphries RK; Pawliuk R; Leboulch P; Hoffman R; Nagel RL; Eaves C
    Exp Hematol; 2004 May; 32(5):461-9. PubMed ID: 15145214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-clinical Development of a Lentiviral Vector Expressing the Anti-sickling βAS3 Globin for Gene Therapy for Sickle Cell Disease.
    Poletti V; Urbinati F; Charrier S; Corre G; Hollis RP; Campo Fernandez B; Martin S; Rothe M; Schambach A; Kohn DB; Mavilio F
    Mol Ther Methods Clin Dev; 2018 Dec; 11():167-179. PubMed ID: 30533448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Globin sleeping beauty transposon reduces red blood cell sickling in a patient-derived CD34(+)-based in vitro model.
    Sjeklocha LM; Wong PY; Belcher JD; Vercellotti GM; Steer CJ
    PLoS One; 2013; 8(11):e80403. PubMed ID: 24260386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.