These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25681758)

  • 1. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
    Zhang C; Song S; Wen X; Yao L; Long Z
    J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-step super-Gaussian independent component analysis approach for fMRI data.
    Ge R; Yao L; Zhang H; Long Z
    Neuroimage; 2015 Sep; 118():344-58. PubMed ID: 26057592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voxel selection in FMRI data analysis based on sparse representation.
    Li Y; Namburi P; Yu Z; Guan C; Feng J; Gu Z
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2439-51. PubMed ID: 19567340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voxel selection framework in multi-voxel pattern analysis of FMRI data for prediction of neural response to visual stimuli.
    Chou CA; Kampa K; Mehta SH; Tungaraza RF; Chaovalitwongse WA; Grabowski TJ
    IEEE Trans Med Imaging; 2014 Apr; 33(4):925-34. PubMed ID: 24710161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical comparison of different LDA methods in fMRI-based brain states decoding.
    Xia M; Song S; Yao L; Long Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1185-92. PubMed ID: 26405876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
    Yamashita O; Sato MA; Yoshioka T; Tong F; Kamitani Y
    Neuroimage; 2008 Oct; 42(4):1414-29. PubMed ID: 18598768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Enhanced Smoothed
    Paik JW; Lee JH; Hong W
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian fMRI data analysis with sparse spatial basis function priors.
    Flandin G; Penny WD
    Neuroimage; 2007 Feb; 34(3):1108-25. PubMed ID: 17157034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia.
    Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD
    Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint sparse representation of brain activity patterns in multi-task fMRI data.
    Ramezani M; Marble K; Trang H; Johnsrude IS; Abolmaesumi P
    IEEE Trans Med Imaging; 2015 Jan; 34(1):2-12. PubMed ID: 25073167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse logistic regression for whole-brain classification of fMRI data.
    Ryali S; Supekar K; Abrams DA; Menon V
    Neuroimage; 2010 Jun; 51(2):752-64. PubMed ID: 20188193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting brain states associated with object categories from fMRI data.
    Behroozi M; Daliri MR
    J Integr Neurosci; 2014 Dec; 13(4):645-67. PubMed ID: 25352153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.