These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25681824)

  • 1. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2.
    Hu JJ; Xing YW; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2019 Jul; 123(7):1147-1158. PubMed ID: 30861064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.).
    Peguero-Pina JJ; Sisó S; Sancho-Knapik D; Díaz-Espejo A; Flexas J; Galmés J; Gil-Pelegrín E
    Tree Physiol; 2016 Mar; 36(3):287-99. PubMed ID: 26496958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.
    Wang Y; Momohara A; Wang L; Lebreton-Anberrée J; Zhou Z
    PLoS One; 2015; 10(7):e0130941. PubMed ID: 26154449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.
    Haworth M; Heath J; McElwain JC
    Ann Bot; 2010 Mar; 105(3):411-8. PubMed ID: 20089556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric pCO
    Arab L; Seegmueller S; Kreuzwieser J; Eiblmeier M; Rennenberg H
    Planta; 2019 Feb; 249(2):481-495. PubMed ID: 30259170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Miocene CO
    Londoño L; Royer DL; Jaramillo C; Escobar J; Foster DA; Cárdenas-Rozo AL; Wood A
    Am J Bot; 2018 Nov; 105(11):1929-1937. PubMed ID: 30418663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
    Haworth M; Marino G; Loreto F; Centritto M
    Oecologia; 2021 Dec; 197(4):867-883. PubMed ID: 33515295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reading a CO
    Beerling DJ; Royer DL
    New Phytol; 2002 Mar; 153(3):387-397. PubMed ID: 33863224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal index responses of Agrostis canina to CO2 and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy.
    Haworth M; Gallagher A; Elliott-Kingston C; Raschi A; Marandola D; McElwain JC
    New Phytol; 2010 Nov; 188(3):845-55. PubMed ID: 20704659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO
    Haworth M; Marino G; Materassi A; Raschi A; Scutt CP; Centritto M
    Sci Total Environ; 2023 Mar; 863():160908. PubMed ID: 36535478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula.
    Prats KA; Brodersen CR; Ashton MS
    Am J Bot; 2019 May; 106(5):656-666. PubMed ID: 31034587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.
    Yan W; Zhong Y; Shangguan Z
    Glob Chang Biol; 2017 Sep; 23(9):3781-3793. PubMed ID: 28181733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of individual stomata in Ipomoea pes-caprae to various CO2 concentrations.
    Kamakura M; Furukawa A
    Physiol Plant; 2008 Mar; 132(3):255-61. PubMed ID: 18283728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO
    Aranda I; Cadahía E; Fernández de Simón B
    J Plant Physiol; 2020 Jan; 244():153083. PubMed ID: 31812028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.