These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2568187)

  • 21. Role of cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein.
    Zeng X; Farrenkopf B; Hohmann S; Dyda F; Furey W; Jordan F
    Biochemistry; 1993 Mar; 32(10):2704-9. PubMed ID: 8448127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of yeast pyruvate decarboxylase for enhanced selectivity towards carboligation.
    Agarwal PK; Uppada V; Swaminathan AG; Noronha SB
    Bioresour Technol; 2015 Sep; 192():90-6. PubMed ID: 26022970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.
    Ishida N; Saitoh S; Onishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Biosci Biotechnol Biochem; 2006 May; 70(5):1148-53. PubMed ID: 16717415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cloning of the ADE2 gene of Saccharomyces cerevisiae and localization of the ARS-sequence].
    Sasnauskas KV; Giadvilaĭte AA; Ianulaĭtis AA
    Genetika; 1987 Jul; 23(7):1141-8. PubMed ID: 2888707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Jin YS; Seo JH
    Bioresour Technol; 2013 Oct; 146():274-281. PubMed ID: 23941711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.
    Oud B; Flores CL; Gancedo C; Zhang X; Trueheart J; Daran JM; Pronk JT; van Maris AJ
    Microb Cell Fact; 2012 Sep; 11():131. PubMed ID: 22978798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus.
    Choo JH; Han C; Lee DW; Sim GH; Moon HY; Kim JY; Song JY; Kang HA
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3723-3737. PubMed ID: 29497799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Cloning the pyruvate decarboxylase gene of Zymomonas mobilis and its expression in Escherichia coli].
    Zverlov VV; Bankovskiĭ VK; Churikova OV; Mogutov MA; Iur'ev MZ
    Mol Gen Mikrobiol Virusol; 1989 Sep; (9):11-3. PubMed ID: 2693955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain.
    Zhang Y; Liu G; Engqvist MK; Krivoruchko A; Hallström BM; Chen Y; Siewers V; Nielsen J
    Microb Cell Fact; 2015 Aug; 14():116. PubMed ID: 26253003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression.
    Brion C; Ambroset C; Delobel P; Sanchez I; Blondin B
    BMC Genomics; 2014 Dec; 15(1):1085. PubMed ID: 25494835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene.
    Muller EH; Richards EJ; Norbeck J; Byrne KL; Karlsson KA; Pretorius GH; Meacock PA; Blomberg A; Hohmann S
    FEBS Lett; 1999 Apr; 449(2-3):245-50. PubMed ID: 10338141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae.
    Liesen T; Hollenberg CP; Heinisch JJ
    Mol Microbiol; 1996 Aug; 21(3):621-32. PubMed ID: 8866484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate decarboxylase is like acetolactate synthase (ILV2) and not like the pyruvate dehydrogenase E1 subunit.
    Green JB
    FEBS Lett; 1989 Mar; 246(1-2):1-5. PubMed ID: 2651151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast.
    van Maris AJ; Geertman JM; Vermeulen A; Groothuizen MK; Winkler AA; Piper MD; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2004 Jan; 70(1):159-66. PubMed ID: 14711638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of pdc2 regulating pyruvate decarboxylase synthesis in yeast.
    Velmurugan S; Lobo Z; Maitra PK
    Genetics; 1997 Mar; 145(3):587-94. PubMed ID: 9055069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning of the orotidine 5'-phosphate decarboxylase (ODC) gene of Schwanniomyces occidentalis by complementation of the ura3 mutation in S. cerevisiae.
    Klein RD; Roof LL
    Curr Genet; 1988; 13(1):29-35. PubMed ID: 2834102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved conversion of cinnamaldehyde derivatives to diol compounds via a pyruvate decarboxylase-dependent mechanism in budding yeast.
    Miyakoshi S; Negishi Y; Sekiya Y; Nakajima S
    J Biosci Bioeng; 2016 Mar; 121(3):265-7. PubMed ID: 26228910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase (erg19p) forms homodimers in vivo, and a single substitution in a structurally conserved region impairs dimerization.
    Cordier H; Lacombe C; Karst F; Bergès T
    Curr Microbiol; 1999 May; 38(5):290-4. PubMed ID: 10355117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.