These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25681931)

  • 21. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.
    Loeffler TD; Chen B
    J Chem Phys; 2013 Dec; 139(23):234707. PubMed ID: 24359386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavitation in drying droplets of soft matter solutions.
    Meng F; Doi M; Ouyang Z
    Phys Rev Lett; 2014 Aug; 113(9):098301. PubMed ID: 25216010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite-size effects in the microscopic structure of a hard-sphere fluid in a narrow cylindrical pore.
    Román FL; White JA; González A; Velasco S
    J Chem Phys; 2006 Apr; 124(15):154708. PubMed ID: 16674252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic droplet method for nucleation kinetics measurements.
    Laval P; Crombez A; Salmon JB
    Langmuir; 2009 Feb; 25(3):1836-41. PubMed ID: 19105719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleation of colloids and macromolecules in a finite volume.
    Lutsko JF
    J Chem Phys; 2012 Oct; 137(15):154903. PubMed ID: 23083187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple correction to the classical theory of homogeneous nucleation.
    Nadykto AB; Yu F
    J Chem Phys; 2005 Mar; 122(10):104511. PubMed ID: 15836336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: from the steady-state nucleation to the transient time regime.
    Peng LJ; Morris JR; Aga RS
    J Chem Phys; 2010 Aug; 133(8):084505. PubMed ID: 20815578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.
    Shchekin AK; Shabaev IV; Hellmuth O
    J Chem Phys; 2013 Feb; 138(5):054704. PubMed ID: 23406138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cavitation inception of water with solid nanoparticles: A molecular dynamics study.
    Li B; Gu Y; Chen M
    Ultrason Sonochem; 2019 Mar; 51():120-128. PubMed ID: 30420302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-size effects in dissipative particle dynamics simulations.
    Velázquez ME; Gama-Goicochea A; González-Melchor M; Neria M; Alejandre J
    J Chem Phys; 2006 Feb; 124(8):084104. PubMed ID: 16512705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water.
    Bapat PS; Pandit AB
    Ultrason Sonochem; 2008 Jan; 15(1):65-77. PubMed ID: 17368069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting vapour bubbles in simulations of metastable water.
    González MA; Menzl G; Aragones JL; Geiger P; Caupin F; Abascal JL; Dellago C; Valeriani C
    J Chem Phys; 2014 Nov; 141(18):18C511. PubMed ID: 25399176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classical nucleation theory from a dynamical approach to nucleation.
    Lutsko JF; Durán-Olivencia MA
    J Chem Phys; 2013 Jun; 138(24):244908. PubMed ID: 23822275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleation near the eutectic point in a Potts-lattice gas model.
    Agarwal V; Peters B
    J Chem Phys; 2014 Feb; 140(8):084111. PubMed ID: 24588152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Canonical free-energy barrier of particle and polymer cluster formation.
    Zierenberg J; Schierz P; Janke W
    Nat Commun; 2017 Feb; 8():14546. PubMed ID: 28240262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems.
    Factorovich MH; Molinero V; Scherlis DA
    J Chem Phys; 2014 Feb; 140(6):064111. PubMed ID: 24527904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.