BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25681934)

  • 1. Tolman length and rigidity constants of the Lennard-Jones fluid.
    Wilhelmsen Ø; Bedeaux D; Reguera D
    J Chem Phys; 2015 Feb; 142(6):064706. PubMed ID: 25681934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples.
    Aasen A; Blokhuis EM; Wilhelmsen Ø
    J Chem Phys; 2018 May; 148(20):204702. PubMed ID: 29865818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study.
    Block BJ; Das SK; Oettel M; Virnau P; Binder K
    J Chem Phys; 2010 Oct; 133(15):154702. PubMed ID: 20969414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction to the interfacial tension by curvature radius: differences between droplets and bubbles.
    Castellanos AJ; Toro-Mendoza J; Garcia-Sucre M
    J Phys Chem B; 2009 Apr; 113(17):5891-6. PubMed ID: 19338313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perspective on the interfacial properties of nanoscopic liquid drops.
    Malijevský A; Jackson G
    J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal critical behavior of curvature-dependent interfacial tension.
    Das SK; Binder K
    Phys Rev Lett; 2011 Dec; 107(23):235702. PubMed ID: 22182102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory of size-dependent surface tension of Lennard-Jones fluid droplets using a double well type Helmholtz free energy functional.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Sep; 135(12):124710. PubMed ID: 21974555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory.
    Rehner P; Gross J
    J Chem Phys; 2018 Apr; 148(16):164703. PubMed ID: 29716214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolman lengths and rigidity constants from free-energy functionals-General expressions and comparison of theories.
    Rehner P; Aasen A; Wilhelmsen Ø
    J Chem Phys; 2019 Dec; 151(24):244710. PubMed ID: 31893882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation work, surface tension, and Gibbs-Tolman length for nucleus of any size.
    Kashchiev D
    J Chem Phys; 2020 Sep; 153(12):124509. PubMed ID: 33003745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess equimolar radius of liquid drops.
    Horsch M; Hasse H; Shchekin AK; Agarwal A; Eckelsbach S; Vrabec J; Müller EA; Jackson G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031605. PubMed ID: 22587106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalence between condensation and boiling in a Lennard-Jones fluid.
    Sanchez-Burgos I; de Hijes PM; Rosales-Pelaez P; Vega C; Sanz E
    Phys Rev E; 2020 Dec; 102(6-1):062609. PubMed ID: 33466022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical approaches to determine the interface tension of curved interfaces from free energy calculations.
    Tröster A; Oettel M; Block B; Virnau P; Binder K
    J Chem Phys; 2012 Feb; 136(6):064709. PubMed ID: 22360217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Tolman length and rigidity constants of water and their role in nucleation.
    Wilhelmsen Ø; Bedeaux D; Reguera D
    J Chem Phys; 2015 May; 142(17):171103. PubMed ID: 25956081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the thermodynamic expansion of the nucleation free-energy barrier.
    Barrett JC
    J Chem Phys; 2009 Aug; 131(8):084711. PubMed ID: 19725625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
    Baidakov VG; Bobrov KS
    J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases.
    Zheng L; Lee T; Guo Z; Rumschitzki D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033302. PubMed ID: 24730962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2010 Jul; 133(4):044704. PubMed ID: 20687673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some estimates of the surface tension of curved surfaces using density functional theory.
    Barrett JC
    J Chem Phys; 2006 Apr; 124(14):144705. PubMed ID: 16626229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.