These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25682161)

  • 1. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands.
    Maruyama N; Shibata Y; Mochizuki A; Yamada A; Maki K; Inoue T; Kamijo R; Miyazaki T
    Biomaterials; 2015 Apr; 47():62-71. PubMed ID: 25682161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Aging by Advanced Glycation End Products: A Multiscale Mechanical Analysis.
    Ganeko K; Masaki C; Shibata Y; Mukaibo T; Kondo Y; Nakamoto T; Miyazaki T; Hosokawa R
    J Dent Res; 2015 Dec; 94(12):1684-90. PubMed ID: 26310723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.
    Pezzotti G; Sakakura S
    J Biomed Mater Res A; 2003 May; 65(2):229-36. PubMed ID: 12734817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone toughening through stress-induced non-collagenous protein denaturation.
    Wang Z; Vashishth D; Picu RC
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1093-1106. PubMed ID: 29658056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level.
    Katsamenis OL; Chong HM; Andriotis OG; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():152-65. PubMed ID: 23131790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodology for the investigation of toughness and crack propagation in mouse bone.
    Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO
    J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
    Libonati F; Nair AK; Vergani L; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():184-91. PubMed ID: 23500480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue.
    Chang YT; Chen CM; Tu MY; Chen HL; Chang SY; Tsai TC; Wang YT; Hsiao HL
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1412-20. PubMed ID: 21783151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteopontin deficiency increases bone fragility but preserves bone mass.
    Thurner PJ; Chen CG; Ionova-Martin S; Sun L; Harman A; Porter A; Ager JW; Ritchie RO; Alliston T
    Bone; 2010 Jun; 46(6):1564-73. PubMed ID: 20171304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteopontin deficiency and aging on nanomechanics of mouse bone.
    Kavukcuoglu NB; Denhardt DT; Guzelsu N; Mann AB
    J Biomed Mater Res A; 2007 Oct; 83(1):136-44. PubMed ID: 17390367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-rate stiffening of cortical bone: observations and implications from nanoindentation experiments.
    Maruyama N; Shibata Y; Wurihan ; Swain MV; Kataoka Y; Takiguchi Y; Yamada A; Maki K; Miyazaki T
    Nanoscale; 2014 Dec; 6(24):14863-71. PubMed ID: 25363088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilatational band formation in bone.
    Poundarik AA; Diab T; Sroga GE; Ural A; Boskey AL; Gundberg CM; Vashishth D
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19178-83. PubMed ID: 23129653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis.
    Viswanath B; Raghavan R; Gurao NP; Ramamurty U; Ravishankar N
    Acta Biomater; 2008 Sep; 4(5):1448-54. PubMed ID: 18448402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
    Zimmermann EA; Launey ME; Ritchie RO
    Biomaterials; 2010 Jul; 31(20):5297-305. PubMed ID: 20409579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.