These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25682161)

  • 21. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
    Zimmermann EA; Launey ME; Ritchie RO
    Biomaterials; 2010 Jul; 31(20):5297-305. PubMed ID: 20409579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6.
    Silva MJ; Brodt MD; Fan Z; Rho JY
    J Biomech; 2004 Nov; 37(11):1639-46. PubMed ID: 15388305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates.
    Zimmermann EA; Gludovatz B; Schaible E; Busse B; Ritchie RO
    Biomaterials; 2014 Jul; 35(21):5472-81. PubMed ID: 24731707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration.
    Ribeiro N; Sousa SR; van Blitterswijk CA; Moroni L; Monteiro FJ
    Biofabrication; 2014 Sep; 6(3):035015. PubMed ID: 24925266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical analysis of the behavior of fracture toughness of compound bioceramic artificial bone.
    Xu S; Xu R; Li R
    Artif Organs; 2011 Dec; 35(12):1160-8. PubMed ID: 21810112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow crack growth behaviour of hydroxyapatite ceramics.
    Benaqqa C; Chevalier J; SaƤdaoui M; Fantozzi G
    Biomaterials; 2005 Nov; 26(31):6106-12. PubMed ID: 15890401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An improved method for the measurement of mechanical properties of bone by nanoindentation.
    Tang B; Ngan AH; Lu WW
    J Mater Sci Mater Med; 2007 Sep; 18(9):1875-81. PubMed ID: 17522963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Estimations of mechanical properties of bones using nanoindentation].
    Sakamoto M
    Clin Calcium; 2016 Jan; 26(1):81-91. PubMed ID: 26728534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomaterials and bone.
    Pili D; Tranquilli Leali P
    Aging Clin Exp Res; 2011 Apr; 23(2 Suppl):74-5. PubMed ID: 21970931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Prospect of the foveola formation in the bovine trabecular bone under fatigue process].
    Ye J; Cai H; Xu K; Zhu R; Zhang M; Tang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):57-61. PubMed ID: 15022464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones.
    Kavukcuoglu NB; Patterson-Buckendahl P; Mann AB
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):348-54. PubMed ID: 19627841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.
    Ng AH; Omelon S; Variola F; Allo B; Willett TL; Alman BA; Grynpas MD
    J Bone Miner Res; 2016 Feb; 31(2):369-79. PubMed ID: 26332924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.