These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 25682229)
41. Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption. Chen LF; Fan HY; Zhang YP; Wei W; Lin JP; Wei DZ; Wang HL J Biotechnol; 2017 Jun; 251():68-75. PubMed ID: 28427921 [TBL] [Abstract][Full Text] [Related]
42. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase. Ye Q; Cao H; Mi L; Yan M; Wang Y; He Q; Li J; Xu L; Chen Y; Xiong J; Ouyang P; Ying H Bioresour Technol; 2010 Nov; 101(22):8911-4. PubMed ID: 20630744 [TBL] [Abstract][Full Text] [Related]
43. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. Yasohara Y; Kizaki N; Hasegawa J; Wada M; Kataoka M; Shimizu S Biosci Biotechnol Biochem; 2000 Jul; 64(7):1430-6. PubMed ID: 10945260 [TBL] [Abstract][Full Text] [Related]
44. Characterization of a novel aldo-keto reductase with anti-Prelog stereospecificity from Corallococcus sp. EGB. Yajuan Z; Yajuan D; Lingli Z; Zhoukun L; Zhongli C; Yan H Int J Biol Macromol; 2020 Mar; 146():36-44. PubMed ID: 31887378 [TBL] [Abstract][Full Text] [Related]
45. An experimental modeling of trinomial bioengineering- crp, rDNA, and transporter engineering within single cell factory for maximizing two-phase bioreduction. Basak S; Ghosh SK; Punetha VD; Aphale AN; Patra PK; Sahoo NG Int J Biol Macromol; 2017 Feb; 95():818-825. PubMed ID: 27923567 [TBL] [Abstract][Full Text] [Related]
46. Applying slow-release biocatalysis to the asymmetric reduction of ethyl 4-chloroacetoacetate. Houng JY; Liau JS Biotechnol Lett; 2003 Jan; 25(1):17-21. PubMed ID: 12882300 [TBL] [Abstract][Full Text] [Related]
47. Distribution and Organoleptic Impact of Ethyl 3-Hydroxybutanoate Enantiomers in Wine. Lytra G; Cameleyre M; Tempere S; Barbe JC J Agric Food Chem; 2015 Dec; 63(48):10484-91. PubMed ID: 26587875 [TBL] [Abstract][Full Text] [Related]
48. High-level production of heterologous proteins using untreated cane molasses and corn steep liquor in Escherichia coli medium. Ye Q; Li X; Yan M; Cao H; Xu L; Zhang Y; Chen Y; Xiong J; Ouyang P; Ying H Appl Microbiol Biotechnol; 2010 Jun; 87(2):517-25. PubMed ID: 20309539 [TBL] [Abstract][Full Text] [Related]
49. Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent L-lactate dehydrogenase. Gao C; Zhang W; Ma C; Liu P; Xu P Bioresour Technol; 2011 Apr; 102(7):4595-9. PubMed ID: 21295977 [TBL] [Abstract][Full Text] [Related]
50. Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer's yeast cells in the presence of allyl bromide. Yu MA; Wei YM; Zhao L; Jiang L; Zhu XB; Qi W J Ind Microbiol Biotechnol; 2007 Feb; 34(2):151-6. PubMed ID: 17043805 [TBL] [Abstract][Full Text] [Related]
51. A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. Ye Q; Ouyang P; Ying H Appl Microbiol Biotechnol; 2011 Feb; 89(3):513-22. PubMed ID: 20957354 [TBL] [Abstract][Full Text] [Related]
53. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Jung J; Park HJ; Uhm KN; Kim D; Kim HK Biochim Biophys Acta; 2010 Sep; 1804(9):1841-9. PubMed ID: 20601218 [TBL] [Abstract][Full Text] [Related]
54. Development of a bioconversion system using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. Yoon SA; Kim HK J Microbiol Biotechnol; 2013 Oct; 23(10):1395-402. PubMed ID: 23770562 [TBL] [Abstract][Full Text] [Related]
55. Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction. Yasohara Y; Kizaki N; Hasegawa J; Takahashi S; Wada M; Kataoka M; Shimizu S Appl Microbiol Biotechnol; 1999 Jun; 51(6):847-51. PubMed ID: 10422229 [TBL] [Abstract][Full Text] [Related]
56. Construction and co-expression of a polycistronic plasmid encoding carbonyl reductase and glucose dehydrogenase for production of ethyl (S)-4-chloro-3-hydroxybutanoate. Ye Q; Cao H; Yan M; Cao F; Zhang Y; Li X; Xu L; Chen Y; Xiong J; Ouyang P; Ying H Bioresour Technol; 2010 Sep; 101(17):6761-7. PubMed ID: 20382525 [TBL] [Abstract][Full Text] [Related]
57. Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin. Zhang Y; Zhou Y; Cao S; Li S; Jin S; Zhang S J Microencapsul; 2015; 32(7):711-8. PubMed ID: 26471403 [TBL] [Abstract][Full Text] [Related]
58. Purification and properties of a carbonyl reductase involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate from Cylindrocarpon sclerotigenum IFO 31855. Saratani Y; Uheda E; Yamamoto H; Nishimura A; Yoshizako F Biosci Biotechnol Biochem; 2003 Jun; 67(6):1417-20. PubMed ID: 12843676 [TBL] [Abstract][Full Text] [Related]
59. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Ni Y; Li CX; Wang LJ; Zhang J; Xu JH Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841 [TBL] [Abstract][Full Text] [Related]