These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25682246)

  • 1. Towards SERS based applications in food analytics: lipophilic sensor layers for the detection of Sudan III in food matrices.
    Jahn M; Patze S; Bocklitz T; Weber K; Cialla-May D; Popp J
    Anal Chim Acta; 2015 Feb; 860():43-50. PubMed ID: 25682246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and quantitative detection of trace Sudan black B in dyed black rice by surface-enhanced Raman spectroscopy (SERS).
    Zhao Y; Yamaguchi Y; Liu C; Li M; Dou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():202-206. PubMed ID: 30901705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes.
    Cañamares MV; Garcia-Ramos JV; Gómez-Varga JD; Domingo C; Sanchez-Cortes S
    Langmuir; 2007 Apr; 23(9):5210-5. PubMed ID: 17381143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine.
    Wu M; Li P; Zhu Q; Wu M; Li H; Lu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():110-116. PubMed ID: 29438940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals.
    Radu AI; Kuellmer M; Giese B; Huebner U; Weber K; Cialla-May D; Popp J
    Talanta; 2016 Nov; 160():289-297. PubMed ID: 27591616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor.
    Li X; Lee HK; Phang IY; Lee CK; Ling XY
    Anal Chem; 2014 Oct; 86(20):10437-44. PubMed ID: 25230236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering.
    Kahraman M; Balz BN; Wachsmann-Hogiu S
    Analyst; 2013 May; 138(10):2906-13. PubMed ID: 23529344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Multiplexed Quantification of Banned Sudan Dyes Using Surface Enhanced Raman Scattering and Chemometrics.
    Alomar TS; AlMasoud N; Xu Y; Lima C; Akbali B; Maher S; Goodacre R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay.
    Deng D; Yang H; Liu C; Zhao K; Li J; Deng A
    Food Chem; 2019 Mar; 277():595-603. PubMed ID: 30502190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method.
    Zhang C; Wang K; Han D; Pang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():387-91. PubMed ID: 24322757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.
    Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W
    Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer.
    Jiang X; Lai Y; Wang W; Jiang W; Zhan J
    Talanta; 2013 Nov; 116():14-7. PubMed ID: 24148366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food.
    Wu L; Pu H; Huang L; Sun DW
    Food Chem; 2020 Oct; 328():127105. PubMed ID: 32464556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles.
    Wu LP; Li YF; Huang CZ; Zhang Q
    Anal Chem; 2006 Aug; 78(15):5570-7. PubMed ID: 16878897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum.
    Stokes RJ; McBride E; Wilson CG; Girkin JM; Smith WE; Graham D
    Appl Spectrosc; 2008 Apr; 62(4):371-6. PubMed ID: 18416893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.