These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25682841)

  • 1. Functional constraints on the evolution of long butterfly proboscides: lessons from Neotropical skippers (Lepidoptera: Hesperiidae).
    Bauder JA; Morawetz L; Warren AD; Krenn HW
    J Evol Biol; 2015 Mar; 28(3):678-87. PubMed ID: 25682841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of extreme proboscis lengths in Neotropical Hesperiidae (Lepidoptera).
    Bauder JA; Warren AD; Krenn HW
    J Res Lepid; 2014 Dec; 47():65-71. PubMed ID: 25937673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca).
    Karolyi F; Morawetz L; Colville JF; Handschuh S; Metscher BD; Krenn HW
    Naturwissenschaften; 2013 Nov; 100(11):1083-93. PubMed ID: 24258261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological fine tuning of the feeding apparatus to proboscis length in Hesperiidae (Lepidoptera).
    Krenn HW; Bauder JA
    J Morphol; 2018 Mar; 279(3):396-408. PubMed ID: 29210100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extremely long-tongued neotropical butterfly Eurybia lycisca (Riodinidae): proboscis morphology and flower handling.
    Bauder JA; Lieskonig NR; Krenn HW
    Arthropod Struct Dev; 2011 Mar; 40(2):122-7. PubMed ID: 21115131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouthpart separation does not impede butterfly feeding.
    Lehnert MS; Mulvane CP; Brothers A
    Arthropod Struct Dev; 2014 Mar; 43(2):97-102. PubMed ID: 24389004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of nectar feeding explain flower orientation in plants pollinated by long-proboscid flies.
    McCarren S; Midgley JJ; Johnson SD
    Naturwissenschaften; 2022 Aug; 109(5):47. PubMed ID: 36029364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal model of fluid-feeding mechanisms in a long proboscid orchid bee compared to the short proboscid honey bee.
    Shi L; Wu J; Krenn HW; Yang Y; Yan S
    J Theor Biol; 2020 Jan; 484():110017. PubMed ID: 31542476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations for nectar-feeding in the mouthparts of long-proboscid flies (Nemestrinidae:
    Karolyi F; Szucsich NU; Colville JF; Krenn HW
    Biol J Linn Soc Lond; 2012 Oct; 107(2):414-424. PubMed ID: 24839307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nectar Uptake of a Long-Proboscid
    Krenn HW; Karolyi F; Lampert P; Melin A; Colville JF
    Insects; 2021 Apr; 12(4):. PubMed ID: 33924274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the lepidopteran proboscis in relation to feeding guild.
    Lehnert MS; Beard CE; Gerard PD; Kornev KG; Adler PH
    J Morphol; 2016 Feb; 277(2):167-82. PubMed ID: 26589780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One proboscis, two tasks: adaptations to blood-feeding and nectar-extracting in long-proboscid horse flies (Tabanidae, Philoliche).
    Karolyi F; Colville JF; Handschuh S; Metscher BD; Krenn HW
    Arthropod Struct Dev; 2014 Sep; 43(5):403-13. PubMed ID: 25066540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional morphology of the feeding apparatus and evolution of proboscis length in metalmark butterflies (Lepidoptera: Riodinidae).
    Anne-Sophie Bauder J; Handschuh S; Metscher BD; Krenn HW
    Biol J Linn Soc Lond; 2013 Oct; 110(2):291-304. PubMed ID: 24839308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological specialization influences nectar extraction efficiency of sympatric nectar-feeding bats.
    Gonzalez-Terrazas TP; Medellin RA; Knörnschild M; Tschapka M
    J Exp Biol; 2012 Nov; 215(Pt 22):3989-96. PubMed ID: 22899529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary functional morphology of the proboscis and feeding apparatus of hawk moths (Sphingidae: Lepidoptera).
    Reinwald C; Bauder JA; Karolyi F; Neulinger M; Jaros S; Metscher B; Krenn HW
    J Morphol; 2022 Nov; 283(11):1390-1410. PubMed ID: 36059242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding efficiency of two coexisting nectarivorous bat species (Phyllostomidae: Glossophaginae) at flowers of two key-resource plants.
    Bechler JP; Steiner K; Tschapka M
    PLoS One; 2024; 19(6):e0303227. PubMed ID: 38924018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes.
    Lebeau J; Wesselingh RA; Van Dyck H
    Oecologia; 2016 Feb; 180(2):421-7. PubMed ID: 26541442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.
    Maglianesi MA; Böhning-Gaese K; Schleuning M
    J Anim Ecol; 2015 May; 84(3):655-664. PubMed ID: 25400277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drinking with a very long proboscis: Functional morphology of orchid bee mouthparts (Euglossini, Apidae, Hymenoptera).
    Düster JV; Gruber MH; Karolyi F; Plant JD; Krenn HW
    Arthropod Struct Dev; 2018 Jan; 47(1):25-35. PubMed ID: 29248673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Flower Colour Influences Spontaneous Nectaring in Butterflies: a Case Study with Twenty Subtropical Butterflies.
    Sinha SK; Dolai A; Roy AB; Manna S; Das A
    Neotrop Entomol; 2023 Dec; 52(6):1027-1040. PubMed ID: 37819480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.