BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25683151)

  • 1. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection.
    Sun P; Liang JL; Kang LZ; Huang XY; Huang JJ; Ye ZW; Guo LQ; Lin JF
    Biotechnol Prog; 2015; 31(3):650-5. PubMed ID: 25683151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes.
    Shin SY; Han NS; Park YC; Kim MD; Seo JH
    Enzyme Microb Technol; 2011 Jan; 48(1):48-53. PubMed ID: 22112770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.
    Becker JV; Armstrong GO; van der Merwe MJ; Lambrechts MG; Vivier MA; Pretorius IS
    FEMS Yeast Res; 2003 Oct; 4(1):79-85. PubMed ID: 14554199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli.
    Zhang E; Guo X; Meng Z; Wang J; Sun J; Yao X; Xun H
    World J Microbiol Biotechnol; 2015 Sep; 31(9):1379-85. PubMed ID: 26092168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of resveratrol in recombinant microorganisms.
    Beekwilder J; Wolswinkel R; Jonker H; Hall R; de Vos CH; Bovy A
    Appl Environ Microbiol; 2006 Aug; 72(8):5670-2. PubMed ID: 16885328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells.
    Zhang Y; Li SZ; Li J; Pan X; Cahoon RE; Jaworski JG; Wang X; Jez JM; Chen F; Yu O
    J Am Chem Soc; 2006 Oct; 128(40):13030-1. PubMed ID: 17017764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium.
    Sydor T; Schaffer S; Boles E
    Appl Environ Microbiol; 2010 May; 76(10):3361-3. PubMed ID: 20348297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine.
    Lu Y; Song Y; Zhu J; Xu X; Pang B; Jin H; Jiang C; Liu Y; Shi J
    Food Chem; 2021 Jun; 347():128972. PubMed ID: 33453581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of
    Yang X; Zhang X; He X; Liu C; Zhao X; Han N
    J Microbiol Biotechnol; 2022 Jun; 32(6):761-767. PubMed ID: 35484971
    [No Abstract]   [Full Text] [Related]  

  • 14. The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine.
    González-Candelas L; Gil JV; Lamuela-Raventós RM; Ramón D
    Int J Food Microbiol; 2000 Sep; 59(3):179-83. PubMed ID: 11020039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering.
    Wang Y; Halls C; Zhang J; Matsuno M; Zhang Y; Yu O
    Metab Eng; 2011 Sep; 13(5):455-63. PubMed ID: 21570474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.
    Djordjević R; Gibson B; Sandell M; de Billerbeck GM; Bugarski B; Leskošek-Čukalović I; Vunduk J; Nikićević N; Nedović V
    Yeast; 2015 Jan; 32(1):271-9. PubMed ID: 25418076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells.
    Wang Y; Yu O
    J Biotechnol; 2012 Jan; 157(1):258-60. PubMed ID: 22100267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts.
    Pinu FR; Villas-Boas SG; Martin D
    Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of resveratrol and antioxidant activity in Georgian brand red wines and a number of foreign red wines.
    Chkhikvishvili I; Gogia N; Sirbiladze G
    Georgian Med News; 2008 Jun; (159):53-7. PubMed ID: 18633153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of selected Saccharomyces cerevisiae yeast strains and different aging techniques on the polysaccharide and polyphenolic composition and sensorial characteristics of Cabernet Sauvignon red wines.
    del Barrio-Galán R; Cáceres-Mella A; Medel-Marabolí M; Peña-Neira Á
    J Sci Food Agric; 2015 Aug; 95(10):2132-44. PubMed ID: 25258103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.