These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25683159)

  • 1. Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates.
    Beck DA; McTaggart TL; Setboonsarng U; Vorobev A; Goodwin L; Shapiro N; Woyke T; Kalyuzhnaya MG; Lidstrom ME; Chistoserdova L
    Environ Microbiol; 2015 Mar; 17(3):547-54. PubMed ID: 25683159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments.
    Taubert M; Grob C; Howat AM; Burns OJ; Dixon JL; Chen Y; Murrell JC
    Environ Microbiol; 2015 Oct; 17(10):3937-48. PubMed ID: 25943904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.
    Beck DA; McTaggart TL; Setboonsarng U; Vorobev A; Kalyuzhnaya MG; Ivanova N; Goodwin L; Woyke T; Lidstrom ME; Chistoserdova L
    PLoS One; 2014; 9(7):e102458. PubMed ID: 25058595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30
    Lv H; Tani A
    J Biosci Bioeng; 2018 Dec; 126(6):667-675. PubMed ID: 29914801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov.
    Smalley NE; Taipale S; De Marco P; Doronina NV; Kyrpides N; Shapiro N; Woyke T; Kalyuzhnaya MG
    Int J Syst Evol Microbiol; 2015 Jul; 65(7):2227-2233. PubMed ID: 26231539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of Methylotrophy Pathways in the Genus
    Czarnecki J; Bartosik D
    Curr Issues Mol Biol; 2019; 33():117-132. PubMed ID: 31166188
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigation of XoxF methanol dehydrogenases reveals new methylotrophic bacteria in pelagic marine and freshwater ecosystems.
    Ramachandran A; Walsh DA
    FEMS Microbiol Ecol; 2015 Oct; 91(10):. PubMed ID: 26324853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide-Dependent Regulation of Methylotrophy in
    Masuda S; Suzuki Y; Fujitani Y; Mitsui R; Nakagawa T; Shintani M; Tani A
    mSphere; 2018; 3(1):. PubMed ID: 29404411
    [No Abstract]   [Full Text] [Related]  

  • 9. Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria.
    McTaggart TL; Beck DA; Setboonsarng U; Shapiro N; Woyke T; Lidstrom ME; Kalyuzhnaya MG; Chistoserdova L
    Microorganisms; 2015 Mar; 3(1):94-112. PubMed ID: 27682081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington.
    Kalyuzhnaya MG; Lidstrom ME; Chistoserdova L
    Microb Ecol; 2004 Nov; 48(4):463-72. PubMed ID: 15696380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis.
    Samanta D; Rauniyar S; Saxena P; Sani RK
    mSystems; 2024 Jun; 9(6):e0024824. PubMed ID: 38695578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide-Dependent Methanol and Formaldehyde Oxidation in
    Yanpirat P; Nakatsuji Y; Hiraga S; Fujitani Y; Izumi T; Masuda S; Mitsui R; Nakagawa T; Tani A
    Microorganisms; 2020 May; 8(6):. PubMed ID: 32486139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs.
    Tani A; Mitsui R; Nakagawa T
    Methods Enzymol; 2021; 650():1-18. PubMed ID: 33867018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy.
    Chistoserdova L; Lapidus A; Han C; Goodwin L; Saunders L; Brettin T; Tapia R; Gilna P; Lucas S; Richardson PM; Lidstrom ME
    J Bacteriol; 2007 Jun; 189(11):4020-7. PubMed ID: 17416667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Trends in Methylotrophy.
    Chistoserdova L; Kalyuzhnaya MG
    Trends Microbiol; 2018 Aug; 26(8):703-714. PubMed ID: 29471983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference.
    Keltjens JT; Pol A; Reimann J; Op den Camp HJ
    Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact.
    Antony CP; Kumaresan D; Ferrando L; Boden R; Moussard H; Scavino AF; Shouche YS; Murrell JC
    ISME J; 2010 Nov; 4(11):1470-80. PubMed ID: 20555363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Moderately Thermophilic Facultative Methylotroph within the Class
    Islam T; Hernández M; Gessesse A; Murrell JC; Øvreås L
    Microorganisms; 2021 Feb; 9(3):. PubMed ID: 33668875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense.
    Chu F; Lidstrom ME
    J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylotrophy in a lake: from metagenomics to single-organism physiology.
    Chistoserdova L
    Appl Environ Microbiol; 2011 Jul; 77(14):4705-11. PubMed ID: 21622781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.