BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 25683220)

  • 1. Material characterization of in vivo and in vitro porcine brain using shear wave elasticity.
    Urbanczyk CA; Palmeri ML; Bass CR
    Ultrasound Med Biol; 2015 Mar; 41(3):713-23. PubMed ID: 25683220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo mapping of brain elasticity in small animals using shear wave imaging.
    Macé E; Cohen I; Montaldo G; Miles R; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Mar; 30(3):550-8. PubMed ID: 20876009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region.
    Widman E; Maksuti E; Amador C; Urban MW; Caidahl K; Larsson M
    Ultrasound Med Biol; 2016 Oct; 42(10):2423-35. PubMed ID: 27425151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of atrial radio frequency ablation using intracardiac shear-wave elastography.
    Kwiecinski W; Provost J; Dubois R; Sacher F; Haïssaguerre M; Legros M; Nguyen-Dinh A; Dufait R; Tanter M; Pernot M
    Med Phys; 2014 Nov; 41(11):112901. PubMed ID: 25370668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging.
    Couade M; Pernot M; Prada C; Messas E; Emmerich J; Bruneval P; Criton A; Fink M; Tanter M
    Ultrasound Med Biol; 2010 Oct; 36(10):1662-76. PubMed ID: 20800942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.
    Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y
    Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):369-78. PubMed ID: 21342822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
    Qiu W; Wang C; Li Y; Zhou J; Yang G; Xiao Y; Feng G; Jin Q; Mu P; Qian M; Zheng H
    Ultrasonics; 2015 Sep; 62():89-96. PubMed ID: 26025508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of shear wave elastography in skeletal muscle.
    Eby SF; Song P; Chen S; Chen Q; Greenleaf JF; An KN
    J Biomech; 2013 Sep; 46(14):2381-7. PubMed ID: 23953670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SWAVE Imaging of Placental Elasticity and Viscosity: Proof of Concept.
    Abeysekera JM; Ma M; Pesteie M; Terry J; Pugash D; Hutcheon JA; Mayer C; Lampe L; Salcudean S; Rohling R
    Ultrasound Med Biol; 2017 Jun; 43(6):1112-1124. PubMed ID: 28392000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shearwave dispersion ultrasound vibrometry (SDUV) on swine kidney.
    Amador C; Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2608-19. PubMed ID: 23443697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracardiac echocardiography measurement of dynamic myocardial stiffness with shear wave velocimetry.
    Hollender PJ; Wolf PD; Goswami R; Trahey GE
    Ultrasound Med Biol; 2012 Jul; 38(7):1271-83. PubMed ID: 22579544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.
    He Q; Li GY; Lee FF; Zhang Q; Cao Y; Luo J
    Ultrasound Med Biol; 2017 Jul; 43(7):1520-1532. PubMed ID: 28408062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.