BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1094 related articles for article (PubMed ID: 25683224)

  • 41. Export and expression: mRNAs deliver new messages for controlling pluripotency.
    Saunders A; Wang J
    Cell Stem Cell; 2014 May; 14(5):549-50. PubMed ID: 24792108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs.
    Fukuda T; Yamagata K; Fujiyama S; Matsumoto T; Koshida I; Yoshimura K; Mihara M; Naitou M; Endoh H; Nakamura T; Akimoto C; Yamamoto Y; Katagiri T; Foulds C; Takezawa S; Kitagawa H; Takeyama K; O'Malley BW; Kato S
    Nat Cell Biol; 2007 May; 9(5):604-11. PubMed ID: 17435748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrated and comparative miRNA analysis of starvation-induced autophagy in mouse embryonic fibroblasts.
    Cui J; Lu K; Shi Y; Chen B; Tan SH; Gong Z; Shen HM
    Gene; 2015 Oct; 571(2):194-204. PubMed ID: 26095807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical modification of a synthetic small molecule boosts its biological efficacy against pluripotency genes in mouse fibroblasts.
    Saha A; Pandian GN; Sato S; Taniguchi J; Kawamoto Y; Hashiya K; Bando T; Sugiyama H
    ChemMedChem; 2014 Oct; 9(10):2374-80. PubMed ID: 25044886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells.
    Sharma A; Diecke S; Zhang WY; Lan F; He C; Mordwinkin NM; Chua KF; Wu JC
    J Biol Chem; 2013 Jun; 288(25):18439-47. PubMed ID: 23653361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. N (6)-Methyladenosine (m(6)A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification.
    Wu R; Jiang D; Wang Y; Wang X
    Mol Biotechnol; 2016 Jul; 58(7):450-9. PubMed ID: 27179969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steering pluripotency and differentiation with N
    Malla S; Melguizo-Sanchis D; Aguilo F
    Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):394-402. PubMed ID: 30412796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation.
    Wu Y; Zhang S; Yuan Q
    Stem Cells Dev; 2016 Jul; 25(14):1050-9. PubMed ID: 27216987
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
    Geula S; Moshitch-Moshkovitz S; Dominissini D; Mansour AA; Kol N; Salmon-Divon M; Hershkovitz V; Peer E; Mor N; Manor YS; Ben-Haim MS; Eyal E; Yunger S; Pinto Y; Jaitin DA; Viukov S; Rais Y; Krupalnik V; Chomsky E; Zerbib M; Maza I; Rechavi Y; Massarwa R; Hanna S; Amit I; Levanon EY; Amariglio N; Stern-Ginossar N; Novershtern N; Rechavi G; Hanna JH
    Science; 2015 Feb; 347(6225):1002-6. PubMed ID: 25569111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The N
    Aguilo F; Walsh MJ
    Curr Opin Genet Dev; 2017 Oct; 46():77-82. PubMed ID: 28683341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. m
    Manners O; Baquero-Perez B; Whitehouse A
    Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):370-381. PubMed ID: 30412798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epidermal cells rev up reprogramming.
    Gadue P; Cotsarelis G
    Nat Biotechnol; 2008 Nov; 26(11):1243-4. PubMed ID: 18997762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. m
    Lin Z; Tong MH
    Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):403-411. PubMed ID: 30391644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stage-specific requirement for m
    Dong S; Sun Y; Liu C; Li Y; Yu S; Zhang Q; Xu Y
    Differentiation; 2023; 133():77-87. PubMed ID: 37506593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pluripotency and nuclear reprogramming.
    Dejosez M; Zwaka TP
    Annu Rev Biochem; 2012; 81():737-65. PubMed ID: 22443931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Suppression of SIRT2 and altered acetylation status of human pluripotent stem cells: possible link to metabolic switch during reprogramming.
    Kwon OS; Han MJ; Cha HJ
    BMB Rep; 2017 Sep; 50(9):435-436. PubMed ID: 28683850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.
    Zhao T; Fu Y; Zhu J; Liu Y; Zhang Q; Yi Z; Chen S; Jiao Z; Xu X; Xu J; Duo S; Bai Y; Tang C; Li C; Deng H
    Cell Stem Cell; 2018 Jul; 23(1):31-45.e7. PubMed ID: 29937202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Historical origins of transdifferentiation and reprogramming.
    Graf T
    Cell Stem Cell; 2011 Dec; 9(6):504-16. PubMed ID: 22136926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The m
    Lesbirel S; Wilson SA
    Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):319-328. PubMed ID: 30290229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1.
    Vivori C; Papasaikas P; Stadhouders R; Di Stefano B; Rubio AR; Balaguer CB; Generoso S; Mallol A; Sardina JL; Payer B; Graf T; Valcárcel J
    Genome Biol; 2021 Jun; 22(1):171. PubMed ID: 34082786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 55.