These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 25683429)
21. Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry. Birk JJ; Dippold M; Wiesenberg GL; Glaser B J Chromatogr A; 2012 Jun; 1242():1-10. PubMed ID: 22560452 [TBL] [Abstract][Full Text] [Related]
22. The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Huaman-Castilla NL; Martínez-Cifuentes M; Camilo C; Pedreschi F; Mariotti-Celis M; Pérez-Correa JR Molecules; 2019 Aug; 24(17):. PubMed ID: 31470596 [TBL] [Abstract][Full Text] [Related]
23. Supplementation with grape seed polyphenols results in increased urinary excretion of 3-hydroxyphenylpropionic Acid, an important metabolite of proanthocyanidins in humans. Ward NC; Croft KD; Puddey IB; Hodgson JM J Agric Food Chem; 2004 Aug; 52(17):5545-9. PubMed ID: 15315398 [TBL] [Abstract][Full Text] [Related]
24. Identification and quantitation of phenolic compounds in faecal matrix by capillary gas chromatography and nano-electrospray mass spectrometry. Knust U; Erben G; Spiegelhalder B; Bartsch H; Owen RW Rapid Commun Mass Spectrom; 2006; 20(20):3119-29. PubMed ID: 16986210 [TBL] [Abstract][Full Text] [Related]
25. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. Jiménez-Girón A; Queipo-Ortuño MI; Boto-Ordóñez M; Muñoz-González I; Sánchez-Patán F; Monagas M; Martín-Álvarez PJ; Murri M; Tinahones FJ; Andrés-Lacueva C; Bartolomé B; Moreno-Arribas MV J Agric Food Chem; 2013 Apr; 61(16):3909-15. PubMed ID: 23578197 [TBL] [Abstract][Full Text] [Related]
26. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Kammerer D; Claus A; Carle R; Schieber A J Agric Food Chem; 2004 Jul; 52(14):4360-7. PubMed ID: 15237937 [TBL] [Abstract][Full Text] [Related]
27. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Luo L; Cui Y; Zhang S; Li L; Suo H; Sun B J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():201-209. PubMed ID: 29078146 [TBL] [Abstract][Full Text] [Related]
28. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Sasot G; Martínez-Huélamo M; Vallverdú-Queralt A; Mercader-Martí M; Estruch R; Lamuela-Raventós RM Food Res Int; 2017 Oct; 100(Pt 3):435-444. PubMed ID: 28964366 [TBL] [Abstract][Full Text] [Related]
29. Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio. Casazza AA; Aliakbarian B; Perego P Nat Prod Res; 2011 Oct; 25(18):1751-61. PubMed ID: 21707256 [TBL] [Abstract][Full Text] [Related]
30. Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers. Wang D; Williams BA; Ferruzzi MG; D'Arcy BR Food Chem; 2013 Jun; 138(2-3):1564-73. PubMed ID: 23411282 [TBL] [Abstract][Full Text] [Related]
31. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry. Aybastıer Ö; Dawbaa S; Demir C J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jan; 1072():328-335. PubMed ID: 29223045 [TBL] [Abstract][Full Text] [Related]
32. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Castello F; Costabile G; Bresciani L; Tassotti M; Naviglio D; Luongo D; Ciciola P; Vitale M; Vetrani C; Galaverna G; Brighenti F; Giacco R; Del Rio D; Mena P Arch Biochem Biophys; 2018 May; 646():1-9. PubMed ID: 29580945 [TBL] [Abstract][Full Text] [Related]
33. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. Vetrani C; Rivellese AA; Annuzzi G; Adiels M; Borén J; Mattila I; Orešič M; Aura AM J Nutr Biochem; 2016 Jul; 33():111-8. PubMed ID: 27155917 [TBL] [Abstract][Full Text] [Related]
34. Use of metabolomics and lipidomics to evaluate the hypocholestreolemic effect of Proanthocyanidins from grape seed in a pig model. Quifer-Rada P; Choy YY; Calvert CC; Waterhouse AL; Lamuela-Raventos RM Mol Nutr Food Res; 2016 Oct; 60(10):2219-2227. PubMed ID: 27240545 [TBL] [Abstract][Full Text] [Related]
35. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Gil-Sánchez I; Ayuda-Durán B; González-Manzano S; Santos-Buelga C; Cueva C; Martín-Cabrejas MA; Sanz-Buenhombre M; Guadarrama A; Moreno-Arribas MV; Bartolomé B J Sci Food Agric; 2017 Aug; 97(10):3433-3444. PubMed ID: 28026017 [TBL] [Abstract][Full Text] [Related]
36. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882 [TBL] [Abstract][Full Text] [Related]
37. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). González-Centeno MR; Jourdes M; Femenia A; Simal S; Rosselló C; Teissedre PL J Agric Food Chem; 2012 Dec; 60(48):11850-8. PubMed ID: 23101762 [TBL] [Abstract][Full Text] [Related]
38. Detailed phenolic composition of white grape by-products by RRLC/MS and measurement of the antioxidant activity. Jara-Palacios MJ; Hernanz D; González-Manzano S; Santos-Buelga C; Escudero-Gilete ML; Heredia FJ Talanta; 2014 Jul; 125():51-7. PubMed ID: 24840414 [TBL] [Abstract][Full Text] [Related]