These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25683464)

  • 1. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.
    De Kock T; Boone MA; De Schryver T; Van Stappen J; Derluyn H; Masschaele B; De Schutter G; Cnudde V
    Environ Sci Technol; 2015 Mar; 49(5):2867-74. PubMed ID: 25683464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remobilization of residual non-aqueous phase liquid in porous media by freeze-thaw cycles.
    Singh K; Niven RK; Senden TJ; Turner ML; Sheppard AP; Middleton JP; Knackstedt MA
    Environ Sci Technol; 2011 Apr; 45(8):3473-8. PubMed ID: 21438639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies of glass vial breakage for frozen formulations. I. Vial breakage caused by crystallizable excipient mannitol.
    Jiang G; Akers M; Jain M; Guo J; Distler A; Swift R; Wadhwa MV; Jameel F; Patro S; Freund E
    PDA J Pharm Sci Technol; 2007; 61(6):441-51. PubMed ID: 18410045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development and validation of micro-CT of large deep frozen specimens.
    Kampschulte M; Erdmann G; Sender J; Martels G; Böcker W; ElKhassawna T; Heiß C; Langheinrich AC; Roeb E; Roderfeld M; Krombach GA
    Scanning; 2015; 37(1):63-72. PubMed ID: 25639882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.
    Charra-Vaskou K; Badel E; Charrier G; Ponomarenko A; Bonhomme M; Foucat L; Mayr S; Améglio T
    J Exp Bot; 2016 Feb; 67(3):739-50. PubMed ID: 26585223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore structure evolution in andesite rocks induced by freeze-thaw cycles examined by non-destructive methods.
    Maľa M; Greif V; Ondrášik M
    Sci Rep; 2022 May; 12(1):8390. PubMed ID: 35589929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on pore structure and the mechanical properties of sandstone-concrete binary under freeze-thaw environment.
    Hu A; Xue G; Shang Z; Cao Z; Wang X; Fu Y; Huang X
    Sci Rep; 2023 Oct; 13(1):18280. PubMed ID: 37880482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Influence of Saturation on Freeze-Thaw Damage Characteristics of Sandstone.
    Zhang X; Jin J; Liu X; Wang Y; Li Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Micro-Scale Investigation on the Behaviors of Asphalt Mixtures under Freeze-Thaw Cycles Using Entropy Theory and a Computerized Tomography Scanning Technique.
    Xu H; Li H; Tan Y; Wang L; Hou Y
    Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting long term freeze-thaw risks on Europe built heritage and archaeological sites in a changing climate.
    Grossi CM; Brimblecombe P; Harris I
    Sci Total Environ; 2007 May; 377(2-3):273-81. PubMed ID: 17400281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid-facilitated mobilization of metals by freeze-thaw cycles.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2014 Jan; 48(2):977-84. PubMed ID: 24377325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion].
    Sun BY; Li ZB; Xiao JB; Zhang LT; Ma B; Li JM; Cheng DB
    Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):337-347. PubMed ID: 30907557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rise of thawing drip: Freezing rate effects on ice crystallization and myowater dynamics changes.
    Qian S; Hu F; Mehmood W; Li X; Zhang C; Blecker C
    Food Chem; 2022 Mar; 373(Pt B):131461. PubMed ID: 34717267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined impacts of freeze-thaw processes on paddy land and dry land in Northeast China.
    Chen S; Ouyang W; Hao F; Zhao X
    Sci Total Environ; 2013 Jul; 456-457():24-33. PubMed ID: 23584030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).
    Fisker KV; Holmstrup M; Malte H; Overgaard J
    J Exp Biol; 2014 Nov; 217(Pt 21):3843-52. PubMed ID: 25214492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on the Microfabrication and Mechanical Properties of Freeze-Thaw Fractured Sandstone under Cyclic Loading and Unloading Effects.
    Liu T; Cai W; Sheng Y; Huang J
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze-Thaw Environment.
    Jin X; Hou C; He J; Dias D
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.