These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25683506)
21. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Jo JH; Lee DS; Park D; Park JM Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983 [TBL] [Abstract][Full Text] [Related]
22. Biohydrogen production at pH below 3.0: Is it possible? Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503 [TBL] [Abstract][Full Text] [Related]
23. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296 [TBL] [Abstract][Full Text] [Related]
24. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Santos SC; Rosa PR; Sakamoto IK; Varesche MB; Silva EL Bioresour Technol; 2014 May; 159():55-63. PubMed ID: 24632626 [TBL] [Abstract][Full Text] [Related]
25. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation. Gomes SD; Fuess LT; Penteado ED; Lucas SD; Gotardo JT; Zaiat M Bioresour Technol; 2015 Dec; 197():201-7. PubMed ID: 26340028 [TBL] [Abstract][Full Text] [Related]
26. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Patel AK; Debroy A; Sharma S; Saini R; Mathur A; Gupta R; Tuli DK Bioresour Technol; 2015 Jan; 175():291-7. PubMed ID: 25459835 [TBL] [Abstract][Full Text] [Related]
27. Increased biological hydrogen production with reduced organic loading. Van Ginkel SW; Logan B Water Res; 2005 Oct; 39(16):3819-26. PubMed ID: 16129472 [TBL] [Abstract][Full Text] [Related]
28. Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation. Song J; An D; Ren N; Zhang Y; Chen Y Bioresour Technol; 2011 Dec; 102(23):10875-80. PubMed ID: 21978625 [TBL] [Abstract][Full Text] [Related]
29. Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production. Tapia-Venegas E; Cabrol L; Brandhoff B; Hamelin J; Trably E; Steyer JP; Ruiz-Filippi G Appl Microbiol Biotechnol; 2015 Oct; 99(19):8295-308. PubMed ID: 26254785 [TBL] [Abstract][Full Text] [Related]
30. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Han W; Liu DN; Shi YW; Tang JH; Li YF; Ren NQ Bioresour Technol; 2015 Mar; 180():54-8. PubMed ID: 25590421 [TBL] [Abstract][Full Text] [Related]
31. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Jung JH; Sim YB; Baik JH; Park JH; Kim SH Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682 [TBL] [Abstract][Full Text] [Related]
32. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710 [TBL] [Abstract][Full Text] [Related]
33. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Qiao W; Takayanagi K; Niu Q; Shofie M; Li YY Bioresour Technol; 2013 Dec; 149():92-102. PubMed ID: 24090872 [TBL] [Abstract][Full Text] [Related]
34. Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora. Yokoyama H; Ohmori H; Waki M; Ogino A; Tanaka Y J Biosci Bioeng; 2009 Jan; 107(1):64-6. PubMed ID: 19147112 [TBL] [Abstract][Full Text] [Related]
35. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor. Han W; Wang B; Zhou Y; Wang DX; Wang Y; Yue LR; Li YF; Ren NQ Bioresour Technol; 2012 Apr; 110():219-23. PubMed ID: 22326329 [TBL] [Abstract][Full Text] [Related]
36. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related]
37. Biohydrogen production from glucose using submerged dynamic filtration module: Metabolic product distribution and flux-based analysis. Anburajan P; Park JH; Pugazhendhi A; Kim JS; Kim SH Bioresour Technol; 2019 Sep; 287():121445. PubMed ID: 31113707 [TBL] [Abstract][Full Text] [Related]
38. Changes in performance and bacterial communities in a continuous biohydrogen-producing reactor subjected to substrate- and pH-induced perturbations. García-Depraect O; Diaz-Cruces VF; Rene ER; León-Becerril E Bioresour Technol; 2020 Jan; 295():122182. PubMed ID: 31623922 [TBL] [Abstract][Full Text] [Related]
39. Microbial community in methanogenic packed-bed reactor successfully operating at short hydraulic retention time. Sasaki K; Haruta S; Tatara M; Yamazawa A; Ueno Y; Ishii M; Igarashi Y J Biosci Bioeng; 2006 Mar; 101(3):271-3. PubMed ID: 16716930 [TBL] [Abstract][Full Text] [Related]
40. Continuous biogas production from fodder beet silage as sole substrate. Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]