These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25683544)

  • 21. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate.
    Md Din MF; Lee YY; Ponraj M; Ossen DR; Iwao K; Chelliapan S
    J Therm Biol; 2014 Apr; 41():6-15. PubMed ID: 24679966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal comfort in practice.
    de Dear R
    Indoor Air; 2004; 14 Suppl 7():32-9. PubMed ID: 15330769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bus drivers' mental conditions and their relation to bus passengers' accidents with a focus on the psychological stress concept.
    Yamada Y; Mizuno M; Sugiura M; Tanaka S; Mizuno Y; Yanagiya T; Hirosawa M
    J Hum Ergol (Tokyo); 2008 Jun; 37(1):1-11. PubMed ID: 19157155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiant heat and thermal comfort in vehicles.
    Devonshire JM; Sayer JR
    Hum Factors; 2005; 47(4):827-39. PubMed ID: 16553069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.
    Guéritée J; Tipton MJ
    Physiol Behav; 2015 Feb; 139():378-85. PubMed ID: 25437244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smart heating panels to increase thermal comfort and efficiency.
    Backes D; Trenktrog M; Eckstein L
    Work; 2021; 68(s1):S29-S35. PubMed ID: 33337405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the determination of the thermal comfort conditions of a metropolitan city underground railway.
    Katavoutas G; Assimakopoulos MN; Asimakopoulos DN
    Sci Total Environ; 2016 Oct; 566-567():877-887. PubMed ID: 27280378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental investigation of personal air supply nozzle use in aircraft cabins.
    Fang Z; Liu H; Li B; Baldwin A; Wang J; Xia K
    Appl Ergon; 2015 Mar; 47():193-202. PubMed ID: 25479988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.
    Shen X; Feng S; Li Z; Hu B
    Springerplus; 2016; 5():62. PubMed ID: 26839755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.
    Song WF; Zhang CJ; Lai DD; Wang FM; Kuklane K
    Sci Rep; 2016 Jan; 6():19326. PubMed ID: 26759077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and performance assessment of electrically heated gloves with smart temperature control function.
    Ma N; Lu Y; Xu F; Dai H
    Int J Occup Saf Ergon; 2020 Mar; 26(1):46-54. PubMed ID: 29583088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study on physiological responses and thermal comfort under various ambient temperatures.
    Yao Y; Lian Z; Liu W; Shen Q
    Physiol Behav; 2008 Jan; 93(1-2):310-21. PubMed ID: 17936860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The analysis and optimization of thermal sensation of train drivers under occupational thermal exposure.
    Yang Z; Zhou W; Xu G; Li X; Yang M; Xiao Q; Fan C; Peng Y
    Front Public Health; 2023; 11():1164817. PubMed ID: 37361169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal comfort in environments with different vertical air temperature gradients.
    Möhlenkamp M; Schmidt M; Wesseling M; Wick A; Gores I; Müller D
    Indoor Air; 2019 Jan; 29(1):101-111. PubMed ID: 30339306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.
    Cui W; Wu T; Ouyang Q; Zhu Y
    Indoor Air; 2017 Jan; 27(1):94-103. PubMed ID: 26895741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human behavior in different TDRAs.
    Liu Y; Wang L; Liu J; Di Y
    Physiol Behav; 2013 Jul; 119():25-9. PubMed ID: 23743275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal sensation prediction model for high-speed train occupants based on skin temperatures and skin wettedness.
    Zhou W; Yang M; Peng Y; Xiao Q; Fan C; Xu D
    Int J Biometeorol; 2024 Feb; 68(2):289-304. PubMed ID: 38047941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.