These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25683867)

  • 1. Targeted spatial sampling using GOANNA improves detection of visual field progression.
    Chong LX; Turpin A; McKendrick AM
    Ophthalmic Physiol Opt; 2015 Mar; 35(2):155-69. PubMed ID: 25683867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customized, automated stimulus location choice for assessment of visual field defects.
    Chong LX; McKendrick AM; Ganeshrao SB; Turpin A
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3265-74. PubMed ID: 24781947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma.
    Turpin A; Jankovic D; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1627-34. PubMed ID: 17389493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the GOANNA Visual Field Algorithm Using Artificial Scotoma Generation on Human Observers.
    Chong LX; Turpin A; McKendrick AM
    Transl Vis Sci Technol; 2016 Sep; 5(5):1. PubMed ID: 27622080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining perimetric suprathreshold and threshold procedures to reduce measurement variability in areas of visual field loss.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Jan; 82(1):43-51. PubMed ID: 15630403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal processing of threshold data for detection of progressive glaucomatous visual field loss.
    Spry PG; Johnson CA; Bates AB; Turpin A; Chauhan BC
    Arch Ophthalmol; 2002 Feb; 120(2):173-80. PubMed ID: 11831919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2862-9. PubMed ID: 24595388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a test grid using Eye Movement Perimetry for screening glaucomatous visual field defects.
    Kadavath Meethal NS; Mazumdar D; Asokan R; Panday M; van der Steen J; Vermeer KA; Lemij HG; George RJ; Pel JJM
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):371-379. PubMed ID: 29282563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response times across the visual field: empirical observations and application to threshold determination.
    McKendrick AM; Denniss J; Turpin A
    Vision Res; 2014 Aug; 101():1-10. PubMed ID: 24802595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4787-95. PubMed ID: 14578400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Nov; 82(11):981-7. PubMed ID: 16317375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma.
    Liu S; Lam S; Weinreb RN; Ye C; Cheung CY; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7325-31. PubMed ID: 21810975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of visual field reliability indices in ruling out glaucoma.
    Rao HL; Yadav RK; Begum VU; Addepalli UK; Choudhari NS; Senthil S; Garudadri CS
    JAMA Ophthalmol; 2015 Jan; 133(1):40-4. PubMed ID: 25256758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis.
    Park SC; Kung Y; Su D; Simonson JL; Furlanetto RL; Liebmann JM; Ritch R
    Ophthalmology; 2013 Aug; 120(8):1546-50. PubMed ID: 23697959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma.
    Andersson S; Heijl A; Bizios D; Bengtsson B
    Acta Ophthalmol; 2013 Aug; 91(5):413-7. PubMed ID: 22583841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping.
    Ballae Ganeshrao S; Turpin A; Denniss J; McKendrick AM
    Ophthalmology; 2015 Aug; 122(8):1695-705. PubMed ID: 26077579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of false-negative responses for full threshold and SITA standard perimetry in glaucoma patients and normal observers.
    Johnson CA; Sherman K; Doyle C; Wall M
    J Glaucoma; 2014; 23(5):288-92. PubMed ID: 23632399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Entropy Pursuit for Fast and Accurate Perimetry Testing.
    Wild D; Kucur SS; Sznitman R
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3414-3424. PubMed ID: 28692736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The repeatability of mean defect with size III and size V standard automated perimetry.
    Wall M; Doyle CK; Zamba KD; Artes P; Johnson CA
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1345-51. PubMed ID: 23341012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.