These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25683872)

  • 41. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of Dissolutive Wetting: A Molecular Dynamics Study.
    Yuan Q; Yang J; Sui Y; Zhao YP
    Langmuir; 2017 Jul; 33(26):6464-6470. PubMed ID: 28594558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas-Liquid Separation in Microfluidics.
    Wang S; Yu N; Wang T; Ge P; Ye S; Xue P; Liu W; Shen H; Zhang J; Yang B
    ACS Appl Mater Interfaces; 2016 May; 8(20):13094-103. PubMed ID: 27128986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in droplet wetting and evaporation.
    Brutin D; Starov V
    Chem Soc Rev; 2018 Jan; 47(2):558-585. PubMed ID: 29090296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison between liquid drops and solid particles in partial wetting.
    Stocco A; Nobili M
    Adv Colloid Interface Sci; 2017 Sep; 247():223-233. PubMed ID: 28728667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects.
    Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z
    Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single Droplet on Micro Square-Post Patterned Surfaces - Theoretical Model and Numerical Simulation.
    Zu YQ; Yan YY
    Sci Rep; 2016 Jan; 6():19281. PubMed ID: 26775561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wetting properties of molecularly rough surfaces.
    Svoboda M; Malijevský A; Lísal M
    J Chem Phys; 2015 Sep; 143(10):104701. PubMed ID: 26374050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental investigation of the spontaneous wetting of polymers and polymer blends.
    Brooks CF; Grillet AM; Emerson JA
    Langmuir; 2006 Nov; 22(24):9928-41. PubMed ID: 17106982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capillary rise of polydimethylsiloxane around a poly(ethylene terephthalate) fiber versus viscosity: Existence of a sharp transition in the dynamic wetting behavior.
    Zhang Y; Moins S; Coulembier O; Seveno D; De Coninck J
    J Colloid Interface Sci; 2019 Feb; 536():499-506. PubMed ID: 30384055
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular Investigation of Contact Line Movement in Electrowetted Nanodroplets.
    Chakraborty D; Pathak S; Chakraborty M
    Langmuir; 2020 Oct; 36(42):12580-12589. PubMed ID: 33054230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative phase-field modeling for wetting phenomena.
    Badillo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033005. PubMed ID: 25871200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning.
    Sahoo P; Singhal R; Sow PK
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42586-42601. PubMed ID: 36095093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic Spreading of Droplets on Lyophilic Micropillar-Arrayed Surfaces.
    Zong D; Yang Z; Duan Y
    Langmuir; 2018 Apr; 34(14):4417-4425. PubMed ID: 29547295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic evolution of interface roughness during friction and wear processes.
    Kubiak KJ; Bigerelle M; Mathia TG; Dubois A; Dubar L
    Scanning; 2014; 36(1):30-8. PubMed ID: 23440686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of particle nanotopology on water transport through hydrophobic soils.
    Truong VK; Owuor EA; Murugaraj P; Crawford RJ; Mainwaring DE
    J Colloid Interface Sci; 2015 Dec; 460():61-70. PubMed ID: 26319321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.