These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25683888)

  • 1. Treponema pallidum putative novel drug target identification and validation: rethinking syphilis therapeutics with plant-derived terpenoids.
    Dwivedi UN; Tiwari S; Singh P; Singh S; Awasthi M; Pandey VP
    OMICS; 2015 Feb; 19(2):104-14. PubMed ID: 25683888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An In Silico Identification of Common Putative Vaccine Candidates against Treponema pallidum: A Reverse Vaccinology and Subtractive Genomics Based Approach.
    Kumar Jaiswal A; Tiwari S; Jamal SB; Barh D; Azevedo V; Soares SC
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.
    Naqvi AA; Shahbaaz M; Ahmad F; Hassan MI
    PLoS One; 2015; 10(4):e0124177. PubMed ID: 25894582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of
    DE Souza RO; DA Silva KE; Pereira RM; Simionatto S
    J Biosci; 2019 Jun; 44(2):. PubMed ID: 31180047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.
    Chen X; Zhao M; Qu H
    Biomed Res Int; 2015; 2015():328568. PubMed ID: 26495292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis.
    Houston S; Lithgow KV; Osbak KK; Kenyon CR; Cameron CE
    BMC Struct Biol; 2018 May; 18(1):7. PubMed ID: 29769048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains?
    Šmajs D; Paštěková L; Grillová L
    Am J Trop Med Hyg; 2015 Oct; 93(4):678-83. PubMed ID: 26217043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine.
    Hawley KL; Montezuma-Rusca JM; Delgado KN; Singh N; Uversky VN; Caimano MJ; Radolf JD; Luthra A
    J Bacteriol; 2021 Jul; 203(15):e0008221. PubMed ID: 33972353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global challenge of antibiotic-resistant Treponema pallidum.
    Stamm LV
    Antimicrob Agents Chemother; 2010 Feb; 54(2):583-9. PubMed ID: 19805553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azithromycin resistance in Treponema pallidum.
    Katz KA; Klausner JD
    Curr Opin Infect Dis; 2008 Feb; 21(1):83-91. PubMed ID: 18192791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syphilis and HIV co-infection. Epidemiology, treatment and molecular typing of Treponema pallidum.
    Salado-Rasmussen K
    Dan Med J; 2015 Dec; 62(12):B5176. PubMed ID: 26621404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen.
    Radolf JD; Deka RK; Anand A; Šmajs D; Norgard MV; Yang XF
    Nat Rev Microbiol; 2016 Dec; 14(12):744-759. PubMed ID: 27721440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009-2013.
    Wu BR; Yang CJ; Tsai MS; Lee KY; Lee NY; Huang WC; Wu H; Lee CH; Chen TC; Ko WC; Lin HH; Lu PL; Chen YH; Liu WC; Yang SP; Wu PY; Su YC; Hung CC; Chang SY
    Clin Microbiol Infect; 2014 Aug; 20(8):802-7. PubMed ID: 24438059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.
    Noda AA; Matos N; Blanco O; Rodríguez I; Stamm LV
    Sex Transm Dis; 2016 May; 43(5):332-4. PubMed ID: 27100771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K; Khan W; Azam SS; Wadood A
    Gene; 2015 Feb; 556(2):213-26. PubMed ID: 25436466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azithromycin resistance in Treponema pallidum.
    Mabey D
    Sex Transm Dis; 2009 Dec; 36(12):777-8. PubMed ID: 19801961
    [No Abstract]   [Full Text] [Related]  

  • 17. Syphilis epidemiology in 1994-2013, molecular epidemiological strain typing and determination of macrolide resistance in Treponema pallidum in 2013-2014 in Tuva Republic, Russia.
    Khairullin R; Vorobyev D; Obukhov A; Kuular UH; Kubanova A; Kubanov A; Unemo M
    APMIS; 2016 Jul; 124(7):595-602. PubMed ID: 27102715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum.
    Djokic V; Giacani L; Parveen N
    PLoS Negl Trop Dis; 2019 May; 13(5):e0007401. PubMed ID: 31071095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study.
    Mehla K; Ramana J
    OMICS; 2015 Jul; 19(7):393-406. PubMed ID: 26061459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.