These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25683889)

  • 1. Next generation design, development, and evaluation of cryoprobes for minimally invasive surgery and solid cancer therapeutics: in silico and computational studies.
    Shaikh AM; Srivastava A; Atrey MD
    OMICS; 2015 Feb; 19(2):131-44. PubMed ID: 25683889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computerized planning of cryosurgery using cryoprobes and cryoheaters.
    Rabin Y; Lung DC; Stahovich TF
    Technol Cancer Res Treat; 2004 Jun; 3(3):229-43. PubMed ID: 15161316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of iceball diameter and temperature distribution achieved with 3-mm accuprobe cryoprobes in porcine and human liver tissue and human colorectal liver metastases in vitro.
    Popken F; Seifert JK; Engelmann R; Dutkowski P; Nassir F; Junginger T
    Cryobiology; 2000 Jun; 40(4):302-10. PubMed ID: 10924262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in the design of special cryosurgical apparatus in China.
    Shu QS; Hu SS; Xie AF
    Cryobiology; 1986 Apr; 23(2):184-93. PubMed ID: 3698646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of prostatic cryosurgery with multi-cryoprobe based on refrigerant flow.
    Hossain SMC; Zhang X; Haider Z; Hu P; Zhao G
    J Therm Biol; 2018 Aug; 76():58-67. PubMed ID: 30143298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compact cryosurgical apparatus for minimally invasive procedures.
    Rabin Y; Julian TB; Wolmark N
    Biomed Instrum Technol; 1997; 31(3):251-8. PubMed ID: 9181244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the performance of bifurcate cryoprobes based on shape factor of cryoablative zones.
    Zhao X; Chua KJ
    Cryobiology; 2014 Jun; 68(3):309-17. PubMed ID: 24792542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to improve the efficacy of tumour ablation during cryosurgery.
    Ramajayam KK; Kumar A
    Cryobiology; 2013 Oct; 67(2):201-13. PubMed ID: 23867079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimally invasive cryosurgery--technological advances.
    Baust J; Gage AA; Ma H; Zhang CM
    Cryobiology; 1997 Jun; 34(4):373-84. PubMed ID: 9200822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced renal parenchymal cryoablation with novel 17-gauge cryoprobes.
    Ames CD; Vanlangendonck R; Venkatesh R; Gonzales FC; Quayle S; Yan Y; Humphrey PA; Landman J
    Urology; 2004 Jul; 64(1):173-5. PubMed ID: 15245965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-performance multiprobe cryosurgical device.
    Chang Z; Finkelstein JJ; Ma H; Baust J
    Biomed Instrum Technol; 1994; 28(5):383-90. PubMed ID: 8000439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cryosurgical ablation of bone tissue with a newly developed miniature cryoprobe--adaptation of the method for use in bones in vitro and in vivo].
    Popken F; Bertram C; Land M; König DP; Bilgic M; Jeschkeit S; Hackenbroch MH; Fischer JH
    Z Orthop Ihre Grenzgeb; 2001; 139(1):64-9. PubMed ID: 11253524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.
    Etheridge ML; Choi J; Ramadhyani S; Bischof JC
    J Biomech Eng; 2013 Feb; 135(2):021002. PubMed ID: 23445047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cryosurgical ablation of bone tissue by means of a new miniature cryoprobe -- evaluation of the probe and adaption of the method to in vitro human bone.
    Popken F; Bertram C; König P; Rütt J; Land M; Hackenbroch MH
    Arch Orthop Trauma Surg; 2002 Apr; 122(3):129-33. PubMed ID: 11927992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance.
    Korpan NN; Chefranov SG
    PLoS One; 2020; 15(9):e0238929. PubMed ID: 32941449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computerized planning for multiprobe cryosurgery using a force-field analogy.
    Lung DC; Stahovich TF; Rabin Y
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):101-10. PubMed ID: 15203958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryosurgery in long bones with new miniature cryoprobe: an experimental in vivo study of the cryosurgical temperature field in sheep.
    Popken F; Land M; Bosse M; Erberich H; Meschede P; König DP; Fischer JH; Eysel P
    Eur J Surg Oncol; 2003 Aug; 29(6):542-7. PubMed ID: 12875863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The performance of 17-gauge cryoprobes in vitro.
    Beemster PW; Lagerveld BW; Witte LP; de la Rosette JJ; Pes MP; Wijkstra H
    Technol Cancer Res Treat; 2008 Aug; 7(4):321-7. PubMed ID: 18642970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of tissue freezing by liquid nitrogen based cryoprobe.
    Zhang A; Luo X; Chen C; He L; Xu LX
    Cryo Letters; 2006; 27(4):243-52. PubMed ID: 16990952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New strategies for the placement of cryoprobes in malignant tumors of the liver for reducing the probability of recurrences after hepatic cryosurgery.
    Berger WK; Poledna J
    Int J Colorectal Dis; 2001 Sep; 16(5):331-9. PubMed ID: 11686533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.