These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25683910)
1. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields. Collard JF; Hinsenkamp M Cell Signal; 2015 May; 27(5):889-98. PubMed ID: 25683910 [TBL] [Abstract][Full Text] [Related]
2. In vitro study of the effects of ELF electric fields on gene expression in human epidermal cells. Collard JF; Mertens B; Hinsenkamp M Bioelectromagnetics; 2011 Jan; 32(1):28-36. PubMed ID: 20809503 [TBL] [Abstract][Full Text] [Related]
3. Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields. Collard JF; Lazar C; Nowé A; Hinsenkamp M Prog Biophys Mol Biol; 2013 Jan; 111(1):37-45. PubMed ID: 23257322 [TBL] [Abstract][Full Text] [Related]
4. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently. Huang CY; Chuang CY; Shu WY; Chang CW; Chen CR; Fan TC; Hsu IC PLoS One; 2014; 9(11):e113424. PubMed ID: 25409520 [TBL] [Abstract][Full Text] [Related]
5. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Vianale G; Reale M; Amerio P; Stefanachi M; Di Luzio S; Muraro R Br J Dermatol; 2008 Jun; 158(6):1189-96. PubMed ID: 18410412 [TBL] [Abstract][Full Text] [Related]
6. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Patruno A; Amerio P; Pesce M; Vianale G; Di Luzio S; Tulli A; Franceschelli S; Grilli A; Muraro R; Reale M Br J Dermatol; 2010 Feb; 162(2):258-66. PubMed ID: 19799606 [TBL] [Abstract][Full Text] [Related]
7. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. Simkó M; Mattsson MO J Cell Biochem; 2004 Sep; 93(1):83-92. PubMed ID: 15352165 [TBL] [Abstract][Full Text] [Related]
8. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. Lohmann CH; Schwartz Z; Liu Y; Guerkov H; Dean DD; Simon B; Boyan BD J Orthop Res; 2000 Jul; 18(4):637-46. PubMed ID: 11052501 [TBL] [Abstract][Full Text] [Related]
9. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408 [TBL] [Abstract][Full Text] [Related]
10. Effects of low frequency pulsed electrical current on keratinocytes in vitro. Hinsenkamp M; Jercinovic A; de Graef C; Wilaert F; Heenen M Bioelectromagnetics; 1997; 18(3):250-4. PubMed ID: 9096843 [TBL] [Abstract][Full Text] [Related]
11. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Delle Monache S; Alessandro R; Iorio R; Gualtieri G; Colonna R Bioelectromagnetics; 2008 Dec; 29(8):640-8. PubMed ID: 18512694 [TBL] [Abstract][Full Text] [Related]
12. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Manni V; Lisi A; Rieti S; Serafino A; Ledda M; Giuliani L; Sacco D; D'Emilia E; Grimaldi S Bioelectromagnetics; 2004 Feb; 25(2):118-26. PubMed ID: 14735562 [TBL] [Abstract][Full Text] [Related]
14. Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways. Perera RJ; Koo S; Bennett CF; Dean NM; Gupta N; Qin JZ; Nickoloff BJ J Cell Biochem; 2006 May; 98(2):394-408. PubMed ID: 16440318 [TBL] [Abstract][Full Text] [Related]
15. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Falone S; Grossi MR; Cinque B; D'Angelo B; Tettamanti E; Cimini A; Di Ilio C; Amicarelli F Int J Biochem Cell Biol; 2007; 39(11):2093-106. PubMed ID: 17662640 [TBL] [Abstract][Full Text] [Related]
16. Calcium ion cyclotron resonance (ICR) transfers information to living systems: effects on human epithelial cell differentiation. Lisi A; Ledda M; De Carlo F; Foletti A; Giuliani L; D'Emilia E; Grimaldi S Electromagn Biol Med; 2008; 27(3):230-40. PubMed ID: 18821199 [TBL] [Abstract][Full Text] [Related]
17. CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) by biocomputation. Wang L; Huang J; Jiang M; Chen Q; Jiang Z; Feng H Cell Biochem Biophys; 2014 Nov; 70(2):1011-6. PubMed ID: 24825433 [TBL] [Abstract][Full Text] [Related]
18. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y; Moon J; Kim J Life Sci; 2014 Apr; 102(1):16-27. PubMed ID: 24603130 [TBL] [Abstract][Full Text] [Related]
19. BMP2 and BMP6 control p57(Kip2) expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Gosselet FP; Magnaldo T; Culerrier RM; Sarasin A; Ehrhart JC Cell Signal; 2007 Apr; 19(4):731-9. PubMed ID: 17112701 [TBL] [Abstract][Full Text] [Related]
20. Electric fields reverse the differentiation of keratinocyte monolayer by down-regulating E-cadherin through PI3K/AKT/Snail pathway. Wu C; Chen X; Huang W; Yang J; Zhang Z; Liu J; Liu L; Chen Y; Jiang X; Zhang J Heliyon; 2024 Jun; 10(12):e33069. PubMed ID: 39022057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]