These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25684077)
1. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Liu D; Cito S; Zhang Y; Wang CF; Sikanen TM; Santos HA Adv Mater; 2015 Apr; 27(14):2298-304. PubMed ID: 25684077 [TBL] [Abstract][Full Text] [Related]
2. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications - a review. Ma J; Lee SM; Yi C; Li CW Lab Chip; 2017 Jan; 17(2):209-226. PubMed ID: 27991629 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing. Hood RR; DeVoe DL Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346 [TBL] [Abstract][Full Text] [Related]
4. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942 [TBL] [Abstract][Full Text] [Related]
5. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics. Lunca Popa P; Dalmas G; Faramarzi V; Dayen JF; Majjad H; Kemp NT; Doudin B Nanotechnology; 2011 May; 22(21):215302. PubMed ID: 21451221 [TBL] [Abstract][Full Text] [Related]
6. Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. Molinaro R; Evangelopoulos M; Hoffman JR; Corbo C; Taraballi F; Martinez JO; Hartman KA; Cosco D; Costa G; Romeo I; Sherman M; Paolino D; Alcaro S; Tasciotti E Adv Mater; 2018 Apr; 30(15):e1702749. PubMed ID: 29512198 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of nanoparticles via microfluidic devices and integrated applications. Yao F; Zhu P; Chen J; Li S; Sun B; Li Y; Zou M; Qi X; Liang P; Chen Q Mikrochim Acta; 2023 Jun; 190(7):256. PubMed ID: 37301779 [TBL] [Abstract][Full Text] [Related]
8. Towards a microfluidics platform for the continuous manufacture of organic and inorganic nanoparticles. Desai D; Guerrero YA; Balachandran V; Morton A; Lyon L; Larkin B; Solomon DE Nanomedicine; 2021 Jul; 35():102402. PubMed ID: 33932590 [TBL] [Abstract][Full Text] [Related]
9. Lipid Nanovesicles by Microfluidics: Manipulation, Synthesis, and Drug Delivery. Liu C; Feng Q; Sun J Adv Mater; 2019 Nov; 31(45):e1804788. PubMed ID: 30570773 [TBL] [Abstract][Full Text] [Related]
10. Size Control in the Nanoprecipitation Process of Stable Iodine (¹²⁷I) Using Microchannel Reactor-Optimization by Artificial Neural Networks. Aghajani MH; Pashazadeh AM; Mostafavi SH; Abbasi S; Hajibagheri-Fard MJ; Assadi M; Aghajani M AAPS PharmSciTech; 2015 Oct; 16(5):1059-68. PubMed ID: 25652731 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy. Ma X; Özliseli E; Zhang Y; Pan G; Wang D; Zhang H Biomater Sci; 2019 Jan; 7(2):634-644. PubMed ID: 30534690 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment. Capretto L; Cheng W; Carugo D; Katsamenis OL; Hill M; Zhang X Nanotechnology; 2012 Sep; 23(37):375602. PubMed ID: 22922560 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticles and Microfluidic Devices in Cancer Research. Maia FR; Reis RL; Oliveira JM Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370 [TBL] [Abstract][Full Text] [Related]
14. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518 [TBL] [Abstract][Full Text] [Related]
15. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Herranz-Blanco B; Ginestar E; Zhang H; Hirvonen J; Santos HA Int J Pharm; 2017 Jan; 516(1-2):100-105. PubMed ID: 27840159 [TBL] [Abstract][Full Text] [Related]
16. Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection. Lee SY; Walsh GF; Dal Negro L Opt Express; 2013 Feb; 21(4):4945-57. PubMed ID: 23482027 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616 [TBL] [Abstract][Full Text] [Related]
18. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Feng Q; Sun J; Jiang X Nanoscale; 2016 Jul; 8(25):12430-43. PubMed ID: 26864887 [TBL] [Abstract][Full Text] [Related]
19. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications. Visaveliya N; Lenke S; Köhler JM ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496 [TBL] [Abstract][Full Text] [Related]
20. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Hasani-Sadrabadi MM; Dashtimoghadam E; Bahlakeh G; Majedi FS; Keshvari H; Van Dersarl JJ; Bertsch A; Panahifar A; Renaud P; Tayebi L; Mahmoudi M; Jacob KI Nanomedicine (Lond); 2015; 10(23):3431-49. PubMed ID: 26607456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]