These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2568410)

  • 21. Tyrosine phosphorylation during synapse formation between identified leech neurons.
    Catarsi S; Ching S; Merz DC; Drapeau P
    J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):775-86. PubMed ID: 7562616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular chloride activity and the effect of 5-hydroxytryptamine on the chloride conductance of leech Retzius neurons.
    Munsch T; Schlue WR
    Eur J Neurosci; 1993 Dec; 5(12):1551-7. PubMed ID: 8124513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signalling synapse formation between identified neurons.
    Drapeau P; Catarsi S; Merz DC
    J Physiol Paris; 1995; 89(3):115-23. PubMed ID: 7581300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone.
    Sanchez-Armass S; Merz DC; Drapeau P
    J Exp Biol; 1991 Jan; 155():531-47. PubMed ID: 1849957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical transmission between individual Retzius and sensory neurones of the leech in culture.
    Fuchs PA; Henderson LP; Nicholls JG
    J Physiol; 1982 Feb; 323():195-210. PubMed ID: 6124633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium influx into dendrites of the leech Retzius neuron evoked by 5-hydroxytryptamine.
    Beck A; Lohr C; Berthold H; Deitmer JW
    Cell Calcium; 2002 Mar; 31(3):137-49. PubMed ID: 12027387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presynaptic inhibition of primary afferent transmitter release by 5-hydroxytryptamine at a mechanosensory synapse in the vertebrate spinal cord.
    Sillar KT; Simmers AJ
    J Neurosci; 1994 May; 14(5 Pt 1):2636-47. PubMed ID: 8182432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Re-development of synaptic connections after implanted single 5-HT containing neuron in isolated leech ganglia.
    Zhang RJ
    Sci China B; 1989 Jan; 32(1):88-95. PubMed ID: 2742751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-dependent properties of electrical synapses formed between identified leech neurones in vitro.
    Davis RL
    J Physiol; 1989 Oct; 417():25-46. PubMed ID: 2621592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane properties and selective connexions of identified leech neurones in culture.
    Fuchs PA; Nicholls JG; Ready DF
    J Physiol; 1981 Jul; 316():203-23. PubMed ID: 7320865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic precedence during synapse formation between reciprocally connected neurons involves transmitter-receptor interactions and AA metabolites.
    Lovell P; McMahon B; Syed NI
    J Neurophysiol; 2002 Sep; 88(3):1328-38. PubMed ID: 12205154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of receptors for acetylcholine and 5-hydroxytryptamine on identified leech neurones growing in culture.
    Pellegrino M; Simonneau M
    J Physiol; 1984 Jul; 352():669-84. PubMed ID: 6747903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosine kinase-dependent selection of transmitter responses induced by neuronal contact.
    Catarsi S; Drapeau P
    Nature; 1993 May; 363(6427):353-5. PubMed ID: 7684513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionotropic and metabotropic activation of a neuronal chloride channel by serotonin and dopamine in the leech Hirudo medicinalis.
    Ali DW; Catarsi S; Drapeau P
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):211-9. PubMed ID: 9547394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmental specialization of neuronal connectivity in the leech.
    Wittenberg G; Loer CM; Adamo SA; Kristan WB
    J Comp Physiol A; 1990 Sep; 167(4):453-9. PubMed ID: 2258834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anterograde and retrograde effects of synapse formation on calcium currents and neurite outgrowth in cultured leech neurons.
    Cooper RL; Fernández-de-Miguel F; Adams WB; Nicholls JG
    Proc Biol Sci; 1992 Aug; 249(1325):217-22. PubMed ID: 1360683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contact between identified leech neurones in culture prevents retraction of neurites following electrical activity.
    von Bernhardi R
    J Exp Biol; 1998 Apr; 201(Pt 7):1035-41. PubMed ID: 12968634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth and synapse formation by identified leech neurones in culture: a review.
    Nicholls JG; Hernandez UG
    Q J Exp Physiol; 1989 Dec; 74(7):965-73. PubMed ID: 2697020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of postsynaptic serotonin-activated Cl- currents by depolarization-induced Ca2+ entry into leech neurons.
    Lessmann V; Dietzel ID
    Neuroscience; 1995 Aug; 67(3):525-9. PubMed ID: 7675183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dual role of serotonin in leech swimming.
    Kristan WB; Nusbaum MP
    J Physiol (Paris); 1982-1983; 78(8):743-7. PubMed ID: 7187448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.