These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25685197)

  • 1. Differential co-expression network centrality and machine learning feature selection for identifying susceptibility hubs in networks with scale-free structure.
    Lareau CA; White BC; Oberg AL; McKinney BA
    BioData Min; 2015; 8():5. PubMed ID: 25685197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encore: Genetic Association Interaction Network centrality pipeline and application to SLE exome data.
    Davis NA; Lareau CA; White BC; Pandey A; Wiley G; Montgomery CG; Gaffney PM; McKinney BA
    Genet Epidemiol; 2013 Sep; 37(6):614-21. PubMed ID: 23740754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.
    McKinney BA; White BC; Grill DE; Li PW; Kennedy RB; Poland GA; Oberg AL
    PLoS One; 2013; 8(12):e81527. PubMed ID: 24339943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Two-Phase Feature Selection Method for Identifying Influential Spreaders of Disease Epidemics in Complex Networks.
    Wang X; Han Y; Wang B
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.
    McKinney BA; Crowe JE; Guo J; Tian D
    PLoS Genet; 2009 Mar; 5(3):e1000432. PubMed ID: 19300503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting gene-gene interactions using a permutation-based random forest method.
    Li J; Malley JD; Andrew AS; Karagas MR; Moore JH
    BioData Min; 2016; 9():14. PubMed ID: 27053949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ranking differential hubs in gene co-expression networks.
    Odibat O; Reddy CK
    J Bioinform Comput Biol; 2012 Feb; 10(1):1240002. PubMed ID: 22809303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.
    Amrine KC; Blanco-Ulate B; Cantu D
    PLoS One; 2015; 10(3):e0118731. PubMed ID: 25730421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.
    O'Reilly P; Ortutay C; Gernon G; O'Connell E; Seoighe C; Boyce S; Serrano L; Szegezdi E
    BMC Genomics; 2014 Dec; 15(1):1144. PubMed ID: 25527049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EpistasisRank and EpistasisKatz: interaction network centrality methods that integrate prior knowledge networks.
    Parvandeh S; McKinney BA
    Bioinformatics; 2019 Jul; 35(13):2329-2331. PubMed ID: 30481259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring gene expression networks with hubs using a degree weighted Lasso approach.
    Sulaimanov N; Kumar S; Burdet F; Ibberson M; Pagni M; Koeppl H
    Bioinformatics; 2019 Mar; 35(6):987-994. PubMed ID: 30165436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearest-neighbor Projected-Distance Regression (NPDR) for detecting network interactions with adjustments for multiple tests and confounding.
    Le TT; Dawkins BA; McKinney BA
    Bioinformatics; 2020 May; 36(9):2770-2777. PubMed ID: 31930389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML; Promislow DE; Bergman A
    Genetica; 2007 Jan; 129(1):83-103. PubMed ID: 16897451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network theory for data-driven epistasis networks.
    Lareau CA; McKinney BA
    Methods Mol Biol; 2015; 1253():285-300. PubMed ID: 25403538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentially expressed genes in major depression reside on the periphery of resilient gene coexpression networks.
    Gaiteri C; Sibille E
    Front Neurosci; 2011; 5():95. PubMed ID: 21922000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.).
    Das S; Meher PK; Rai A; Bhar LM; Mandal BN
    PLoS One; 2017; 12(1):e0169605. PubMed ID: 28056073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.