These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 25685446)
1. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner-Wohlfarth-like operators. Adly AA; Abd-El-Hafiz SK J Adv Res; 2013 Jul; 4(4):403-9. PubMed ID: 25685446 [TBL] [Abstract][Full Text] [Related]
2. Analytical vector generalization of the classical Stoner-Wohlfarth hysteron. Petrila I; Stancu A J Phys Condens Matter; 2011 Feb; 23(7):076002. PubMed ID: 21411889 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Ferromagnetic Hysteresis Modelling Using a Preisach-Recurrent Neural Network Model. Grech C; Buzio M; Pentella M; Sammut N Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32512774 [TBL] [Abstract][Full Text] [Related]
4. Review of Play and Preisach Models for Hysteresis in Magnetic Materials. Mörée G; Leijon M Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984302 [TBL] [Abstract][Full Text] [Related]
5. Hysteresis branch crossing and the Stoner-Wohlfarth model. Mathews SA; Ehrlich AC; Charipar NA Sci Rep; 2020 Sep; 10(1):15141. PubMed ID: 32934315 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic Vector Hysteresis Simulation of Soft Magnetic Composite Materials Based on a Hybrid Algorithm of PSO-Powell. Zhao X; Xu H; Du Z; Li Y; Liu L; Zhao Z Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674407 [TBL] [Abstract][Full Text] [Related]
9. Author Correction: Hysteresis branch crossing and the Stoner-Wohlfarth model. Mathews SA; Ehrlich AC; Charipar NA Sci Rep; 2021 Jan; 11(1):2891. PubMed ID: 33510261 [No Abstract] [Full Text] [Related]
10. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. Jiang H; Ji H; Qiu J; Chen Y IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032 [TBL] [Abstract][Full Text] [Related]
11. A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis. Zhou C; Feng C; Aye YN; Ang WT Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442563 [TBL] [Abstract][Full Text] [Related]
12. Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Liang CY; Keller SM; Sepulveda AE; Bur A; Sun WY; Wetzlar K; Carman GP Nanotechnology; 2014 Oct; 25(43):435701. PubMed ID: 25288449 [TBL] [Abstract][Full Text] [Related]
13. Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network. Lin JS; Cheng KS; Mao CW Int J Biomed Comput; 1996 Aug; 42(3):205-14. PubMed ID: 8894776 [TBL] [Abstract][Full Text] [Related]
14. Pattern sequence recognition using a time-varying Hopfield network. Lee DL IEEE Trans Neural Netw; 2002; 13(2):330-42. PubMed ID: 18244435 [TBL] [Abstract][Full Text] [Related]
15. Coercivity of permanent magnetic thin film. Zhao GP; Zhao MG; Lim HS; Feng YP; Ong CK J Phys Condens Matter; 2005 Jan; 17(1):151-60. PubMed ID: 21690675 [TBL] [Abstract][Full Text] [Related]
16. Utilizing neural networks in magnetic media modeling and field computation: A review. Adly AA; Abd-El-Hafiz SK J Adv Res; 2014 Nov; 5(6):615-27. PubMed ID: 25685531 [TBL] [Abstract][Full Text] [Related]
17. A reference model approach to stability analysis of neural networks. Hong Q; Peng J; Xu ZB; Zhang B IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):925-36. PubMed ID: 18238244 [TBL] [Abstract][Full Text] [Related]
18. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. Hergt R; Dutz S; Röder M J Phys Condens Matter; 2008 Sep; 20(38):385214. PubMed ID: 21693832 [TBL] [Abstract][Full Text] [Related]
19. Computerized tumor boundary detection using a Hopfield neural network. Zhu Y; Yan H IEEE Trans Med Imaging; 1997 Feb; 16(1):55-67. PubMed ID: 9050408 [TBL] [Abstract][Full Text] [Related]
20. The hysteretic Hopfield neural network. Bharitkar S; Mendel JM IEEE Trans Neural Netw; 2000; 11(4):879-88. PubMed ID: 18249816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]