These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25685498)

  • 1. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation.
    Mallakpour S; Zadehnazari A
    J Adv Res; 2014 May; 5(3):311-8. PubMed ID: 25685498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of optically active nanostructured polymers bearing amino acid moieties by direct polycondensation of 4,4'-thiobis(2-tert-butyl-5-methylphenol) with chiral diacids.
    Mallakpour S; Soltanian S
    Amino Acids; 2012 Jun; 42(6):2187-94. PubMed ID: 21691754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically active: microwave-assisted synthesis and characterization of L-lysine-derived poly (amide-imide)s.
    Alborzi AR; Zahmatkesh S; Zare K; Sadeghi J
    Amino Acids; 2011 Jul; 41(2):485-94. PubMed ID: 20945152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on synthesis and morphology characteristic of novel chiral poly(amide-imide)/TiO
    Mallakpour S; Banihassan K
    Des Monomers Polym; 2012; 15(4):417-429. PubMed ID: 38812895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel nanostructure amino acid-based poly(amide-imide)s enclosing benzimidazole pendant group in green medium: fabrication and characterization.
    Mallakpour S; Dinari M
    Amino Acids; 2012 Oct; 43(4):1605-13. PubMed ID: 22327513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave irradiation as a versatile tool for increasing reaction rates and yields in synthesis of optically active polyamides containing flexible L-leucine amino acid.
    Mallakpour S; Zadehnazari A
    Amino Acids; 2010 May; 38(5):1369-76. PubMed ID: 19756941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion.
    Hasegawa M
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral bio-nanocomposites based on thermally stable poly(amide-imide) having phenylalanine linkages and reactive organoclay containing tyrosine amino acid.
    Mallakpour S; Dinari M
    Amino Acids; 2013 Mar; 44(3):1021-9. PubMed ID: 23229064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble Poly(amide-imide)s from Diamide-Diamine Monomer with Trifluoromethyl Groups.
    Byun T; Kim SJ; Kim SY
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of novel, optically active polyamides derived from S-valine natural amino acid and bulky anthracenic side chain.
    Mallakpour S; Mirkarimi F
    Amino Acids; 2010 Nov; 39(5):1255-63. PubMed ID: 20352462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-induced synthesis of new optically active and soluble polyamides containing pendent 4-(2-phthalimidiylpropanoylamino)benzoylamino-groups.
    Mallakpour S; Rafiee Z
    Amino Acids; 2009 Oct; 37(4):665-72. PubMed ID: 18836680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic liquid catalyzed synthesis and characterization of heterocyclic and optically active poly (amide-imide)s incorporating L-amino acids.
    Zahmatkesh S
    Amino Acids; 2011 Feb; 40(2):533-42. PubMed ID: 20607323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted synthesis and characterization of optically active poly (ester-imide)s incorporating L-alanine.
    Zahmatkesh S; Hajipour AR
    Amino Acids; 2010 Apr; 38(4):1253-60. PubMed ID: 19701713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of soluble poly(amide-ether-imide-urea)s bearing amino acid moieties in the main chain under green media (ionic liquid).
    Mallakpour S
    Amino Acids; 2011 Feb; 40(2):487-92. PubMed ID: 20571840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and morphological properties of nanocomposite materials based on graphene oxide and l-leucine containing poly(benzimidazole-amide) prepared by ultrasonic irradiation.
    Dinari M; Salehi E; Abdolmaleki A
    Ultrason Sonochem; 2018 Mar; 41():59-66. PubMed ID: 29137790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid synthesis of new block copolyurethanes derived from L-leucine cyclodipeptide in reusable molten ammonium salts: novel and efficient green media for the synthesis of new hydrolysable and biodegradable copolyurethanes.
    Rafiemanzelat F; Abdollahi E
    Amino Acids; 2012 Jun; 42(6):2177-86. PubMed ID: 21706232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of biodegradable chiral poly(ester-imide)s derived from valine-, leucine- and tyrosine-containing monomers.
    Mallakpour S; Asadi P; Sabzalian MR
    Amino Acids; 2011 Nov; 41(5):1215-22. PubMed ID: 21069397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Transparent Aromatic Polyamides from Unsymmetrical Diamine with Trifluoromethyl Groups.
    Kim SJ; Kang I; Byun T; So J; Kim SY
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of novel organosoluble and optically active aromatic polyesters containing L-methionine and phthalimide pendent groups.
    Mallakpour S; Seyedjamali H
    Amino Acids; 2008 May; 34(4):531-8. PubMed ID: 18060345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Membrane-Forming Aromatic Co-Poly(amide-imide)s: Influence of the Chemical Structure on the Morphological, Thermal and Transport Properties.
    Kononova SV; Kuznetsov DA; Gubanova GN; Kruchinina EV; Volkov AY; Vylegzhanina ME; Vlasova EN; Volchek BZ
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.