BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25685782)

  • 1. Natural compounds regulate glycolysis in hypoxic tumor microenvironment.
    Gao JL; Chen YG
    Biomed Res Int; 2015; 2015():354143. PubMed ID: 25685782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1.
    Kim JW; Gao P; Liu YC; Semenza GL; Dang CV
    Mol Cell Biol; 2007 Nov; 27(21):7381-93. PubMed ID: 17785433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment.
    Littleflower AB; Parambil ST; Antony GR; Subhadradevi L
    Biochimie; 2024 May; 220():107-121. PubMed ID: 38184121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.
    Yeung SJ; Pan J; Lee MH
    Cell Mol Life Sci; 2008 Dec; 65(24):3981-99. PubMed ID: 18766298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism.
    Samec M; Liskova A; Koklesova L; Mersakova S; Strnadel J; Kajo K; Pec M; Zhai K; Smejkal K; Mirzaei S; Hushmandi K; Ashrafizadeh M; Saso L; Brockmueller A; Shakibaei M; Büsselberg D; Kubatka P
    Cancers (Basel); 2021 Jan; 13(1):. PubMed ID: 33401572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA regulation and analytical methods in cancer cell metabolism.
    Zhang LF; Jiang S; Liu MF
    Cell Mol Life Sci; 2017 Aug; 74(16):2929-2941. PubMed ID: 28321489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells.
    Luo W; Semenza GL
    Oncotarget; 2011 Jul; 2(7):551-6. PubMed ID: 21709315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLUT and HK: Two primary and essential key players in tumor glycolysis.
    Yadav D; Yadav A; Bhattacharya S; Dagar A; Kumar V; Rani R
    Semin Cancer Biol; 2024 May; 100():17-27. PubMed ID: 38494080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy.
    Ni X; Lu CP; Xu GQ; Ma JJ
    Acta Pharmacol Sin; 2024 Apr; ():. PubMed ID: 38622288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulated glycolysis as an oncogenic event.
    Mikawa T; LLeonart ME; Takaori-Kondo A; Inagaki N; Yokode M; Kondoh H
    Cell Mol Life Sci; 2015 May; 72(10):1881-92. PubMed ID: 25609364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of Key Enzymes of Glycolytic Metabolism in Tumor Microenvironment.
    Xu W; Weng J; Xu M; Zhou Q; Liu S; Hu Z; Ren N; Zhou C; Shen Y
    Cell Reprogram; 2023 Jun; 25(3):91-98. PubMed ID: 37172278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target.
    Zhao J; Jin D; Huang M; Ji J; Xu X; Wang F; Zhou L; Bao B; Jiang F; Xu W; Lu X; Xiao M
    Front Cell Dev Biol; 2024; 12():1416472. PubMed ID: 38933335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of glucose metabolism and expression of glucose transporters in ovarian cancer.
    Ben Ali F; Qmichou Z; Oukabli M; Dakka N; Bakri Y; Eddouks M; Ameziane El Hassani R
    Explor Target Antitumor Ther; 2024; 5(2):384-399. PubMed ID: 38745772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Reprogramming in Thyroid Carcinoma.
    Coelho RG; Fortunato RS; Carvalho DP
    Front Oncol; 2018; 8():82. PubMed ID: 29629339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question.
    Alfarouk KO; Verduzco D; Rauch C; Muddathir AK; Adil HH; Elhassan GO; Ibrahim ME; David Polo Orozco J; Cardone RA; Reshkin SJ; Harguindey S
    Oncoscience; 2014; 1(12):777-802. PubMed ID: 25621294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino Acid Oncometabolism and Immunomodulation of the Tumor Microenvironment in Lung Cancer.
    Fahrmann JF; Vykoukal JV; Ostrin EJ
    Front Oncol; 2020; 10():276. PubMed ID: 32266129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.
    Courtnay R; Ngo DC; Malik N; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):841-51. PubMed ID: 25689954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality.
    McIntyre A; Harris AL
    EMBO Mol Med; 2015 Apr; 7(4):368-79. PubMed ID: 25700172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis.
    Prabhu A; Sarcar B; Miller CR; Kim SH; Nakano I; Forsyth P; Chinnaiyan P
    Neuro Oncol; 2015 Sep; 17(9):1220-30. PubMed ID: 25712957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis.
    Zhan C; Yan L; Wang L; Ma J; Jiang W; Zhang Y; Shi Y; Wang Q
    PLoS One; 2015; 10(3):e0118663. PubMed ID: 25738776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.