These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25685867)

  • 1. Effect of surface texture on freezing in nanopores: surface-induced versus homogeneous crystallization.
    Coasne B
    Langmuir; 2015 Mar; 31(9):2706-13. PubMed ID: 25685867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and vitrification of a cyanurate trimer in nanopores.
    Koh YP; Simon SL
    J Phys Chem B; 2012 Jul; 116(26):7754-61. PubMed ID: 22670859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing of water confined at the nanoscale.
    Alabarse FG; Haines J; Cambon O; Levelut C; Bourgogne D; Haidoux A; Granier D; Coasne B
    Phys Rev Lett; 2012 Jul; 109(3):035701. PubMed ID: 22861870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confined Crystallization of Polymers within Nanopores.
    Liu G; Müller AJ; Wang D
    Acc Chem Res; 2021 Aug; 54(15):3028-3038. PubMed ID: 34270207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition.
    Ustinov EA
    J Chem Phys; 2014 Feb; 140(7):074706. PubMed ID: 24559359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of a thermotropic nematic liquid crystal confined to controlled pore glasses as studied by 129Xe NMR spectroscopy.
    Tallavaara P; Telkki VV; Jokisaari J
    J Phys Chem B; 2006 Nov; 110(43):21603-12. PubMed ID: 17064115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting transition of Lennard-Jones fluid in cylindrical pores.
    Das CK; Singh JK
    J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Phys Chem Chem Phys; 2011 Mar; 13(9):3748-57. PubMed ID: 21173972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of pore sizes and volumes of porous materials by 129Xe NMR of xenon gas dissolved in a medium.
    Telkki VV; Lounila J; Jokisaari J
    J Phys Chem B; 2005 Dec; 109(51):24343-51. PubMed ID: 16375434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and SBA-16: role of boundary water of pore outlets in freezing.
    Kittaka S; Ueda Y; Fujisaki F; Iiyama T; Yamaguchi T
    Phys Chem Chem Phys; 2011 Oct; 13(38):17222-33. PubMed ID: 21879058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing phenomena of lennard-jones fluid confined in jungle-gym nanospace: a monte carlo study.
    Watanabe S; Sugiyama H; Miyahara M
    Langmuir; 2008 Feb; 24(3):802-9. PubMed ID: 18179268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of freezing of simple fluids confined within carbon nanotubes.
    Hung FR; Coasne B; Santiso EE; Gubbins KE; Siperstein FR; Sliwinska-Bartkowiak M
    J Chem Phys; 2005 Apr; 122(14):144706. PubMed ID: 15847552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement.
    Yildirim A; Sentker K; Smales GJ; Pauw BR; Huber P; Schönhals A
    Nanoscale Adv; 2019 Mar; 1(3):1104-1116. PubMed ID: 36133215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Gibbs-Thomson equation for the crystallization of confined fluids.
    Scalfi L; Coasne B; Rotenberg B
    J Chem Phys; 2021 Mar; 154(11):114711. PubMed ID: 33752374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple point of Lennard-Jones fluid in slit nanopore: solidification of critical condensate.
    Kanda H; Miyahara M; Higashitani K
    J Chem Phys; 2004 Apr; 120(13):6173-9. PubMed ID: 15267503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.