BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25686032)

  • 1. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study.
    Romanías MN; Dagaut P; Bedjanian Y; Andrade-Eiroa A; Shahla R; Emmanouil KS; Papadimitriou VC; Spyros A
    J Phys Chem A; 2015 Mar; 119(10):2006-15. PubMed ID: 25686032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral oxides change the atmospheric reactivity of soot: NO2 uptake under dark and UV irradiation conditions.
    Romanias MN; Bedjanian Y; Zaras AM; Andrade-Eiroa A; Shahla R; Dagaut P; Philippidis A
    J Phys Chem A; 2013 Dec; 117(48):12897-911. PubMed ID: 24188183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of organic carbon in heterogeneous reaction of NO2 with soot.
    Han C; Liu Y; He H
    Environ Sci Technol; 2013 Apr; 47(7):3174-81. PubMed ID: 23470009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous reaction of NO
    Han C; Liu Y; He H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21248-21255. PubMed ID: 28735474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous chemistry of the NO3 free radical and N2O5 on decane flame soot at ambient temperature: reaction products and kinetics.
    Karagulian F; Rossi MJ
    J Phys Chem A; 2007 Mar; 111(10):1914-26. PubMed ID: 17388277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of the interaction of HO2 radicals with soot surface.
    Bedjanian Y; Lelièvre S; Le Bras G
    Phys Chem Chem Phys; 2005 Jan; 7(2):334-41. PubMed ID: 19785156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous reaction of NO(2) on fresh and coated soot surfaces.
    Khalizov AF; Cruz-Quinones M; Zhang R
    J Phys Chem A; 2010 Jul; 114(28):7516-24. PubMed ID: 20575530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knudsen cell construction, validation and studies of the uptake of oxygenated fuel additives on soot.
    Mønster J; Rosenørn T; Nielsen OJ; Johnson MS
    Environ Sci Pollut Res Int; 2002; Spec No 1():63-7. PubMed ID: 12638751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Nitration Products during Heterogeneous Reaction of NO
    Guan C; Li X; Zhang W; Huang Z
    J Phys Chem A; 2017 Jan; 121(2):482-492. PubMed ID: 28005389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photochemical conversion of NO
    Han C; Yang W; Yang H; Xue X
    Environ Pollut; 2017 Dec; 231(Pt 1):979-986. PubMed ID: 28888942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of naphthalene uptake by combustion soot particles.
    Liscinsky DS; Yu Z; True B; Peck J; Jennings AC; Wong HW; Franklin J; Herndon SC; Miake-Lye RC
    Environ Sci Technol; 2013 May; 47(9):4875-81. PubMed ID: 23550777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous reaction of NO2 on diesel soot particles.
    Arens F; Gutzwiller L; Baltensperger U; Gäggeler HW; Ammann M
    Environ Sci Technol; 2001 Jun; 35(11):2191-9. PubMed ID: 11414018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of soot microstructure on its ozonization reactivity.
    Han C; Liu Y; Ma J; He H
    J Chem Phys; 2012 Aug; 137(8):084507. PubMed ID: 22938250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of NO2 with hydrocarbon soot: focus on HONO yield, surface modification, and mechanism.
    Aubin DG; Abbatt JP
    J Phys Chem A; 2007 Jul; 111(28):6263-73. PubMed ID: 17595063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition.
    Tapia A; Salgado MS; Martín MP; Sánchez-Valdepeñas J; Rossi MJ; Cabañas B
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):4863-72. PubMed ID: 24807246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with O3.
    Bedjanian Y; Nguyen ML
    Chemosphere; 2010 Apr; 79(4):387-93. PubMed ID: 20188392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy.
    Liati A; Schreiber D; Alpert PA; Liao Y; Brem BT; Corral Arroyo P; Hu J; Jonsdottir HR; Ammann M; Dimopoulos Eggenschwiler P
    Environ Pollut; 2019 Apr; 247():658-667. PubMed ID: 30711821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous chemistry of organic acids on soot surfaces.
    Levitt NP; Zhang R; Xue H; Chen J
    J Phys Chem A; 2007 Jun; 111(22):4804-14. PubMed ID: 17497835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soot reduction by addition of dimethyl carbonate in normal and inverse ethylene diffusion flames: Nanostructural evidence.
    Paladpokkrong C; Liu D; Ying Y; Wang W; Zhang R
    J Environ Sci (China); 2018 Oct; 72():107-117. PubMed ID: 30244737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.