BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25686217)

  • 1. Automatic enumeration of gold nanomaterials at the single-particle level.
    Xu X; Li T; Xu Z; Wei H; Lin R; Xia B; Liu F; Li N
    Anal Chem; 2015 Mar; 87(5):2576-81. PubMed ID: 25686217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed-laser desorption/ionization of clusters from biofunctional gold nanoparticles: implications for protein detections.
    Liu YC; Chang HT; Chiang CK; Huang CC
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5241-8. PubMed ID: 22998761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection.
    Sun X; Li F; Shen G; Huang J; Wang X
    Analyst; 2014 Jan; 139(1):299-308. PubMed ID: 24256770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-Deschênes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonamplification Sandwich Assay Platform for Sensitive Nucleic Acid Detection Based on AuNPs Enumeration with the Dark-Field Microscope.
    Li T; Xu X; Zhang G; Lin R; Chen Y; Li C; Liu F; Li N
    Anal Chem; 2016 Apr; 88(8):4188-91. PubMed ID: 27023372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of DNA-protein interaction with single gold nanoparticles by localized scattering plasmon resonance spectroscopy.
    Lo KM; Lai CY; Chan HM; Ma DL; Li HW
    Methods; 2013 Dec; 64(3):331-7. PubMed ID: 23954570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.
    Xin Y; Li Z; Zhang Z
    Chem Commun (Camb); 2015 Nov; 51(85):15498-501. PubMed ID: 26382019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization, purification, and stability of gold nanoparticles.
    Balasubramanian SK; Yang L; Yung LY; Ong CN; Ong WY; Yu LE
    Biomaterials; 2010 Dec; 31(34):9023-30. PubMed ID: 20801502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of single gold particle arrays with pattern directed electrochemical deposition.
    Ma R; Lu N; Liu L; Wang Y; Shi S; Chi L
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3779-83. PubMed ID: 22856546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles.
    Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL
    Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T7 bacteriophage induced changes of gold nanoparticle morphology: biopolymer capped gold nanoparticles as versatile probes for sensitive plasmonic biosensors.
    Kannan P; Los M; Los JM; Niedziolka-Jonsson J
    Analyst; 2014 Jul; 139(14):3563-71. PubMed ID: 24898163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting bacteria using functionalized gold nanoparticles as the light-scattering reporter.
    Xu X; Chen Y; Wei H; Xia B; Liu F; Li N
    Anal Chem; 2012 Nov; 84(22):9721-8. PubMed ID: 23035847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection.
    Sharma TK; Ramanathan R; Weerathunge P; Mohammadtaheri M; Daima HK; Shukla R; Bansal V
    Chem Commun (Camb); 2014 Dec; 50(100):15856-9. PubMed ID: 25331713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-based signal amplification for biosensing.
    Cao X; Ye Y; Liu S
    Anal Biochem; 2011 Oct; 417(1):1-16. PubMed ID: 21703222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multianalyte electrochemical biosensor based on aptamer- and nanoparticle-integrated bio-barcode amplification.
    Li X; Xia J; Li W; Zhang S
    Chem Asian J; 2010 Feb; 5(2):294-300. PubMed ID: 20013991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates.
    Shen G; Zhang S; Hu X
    Clin Biochem; 2013 Nov; 46(16-17):1734-8. PubMed ID: 23994777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection.
    Yeh FY; Liu TY; Tseng IH; Yang CW; Lu LC; Lin CS
    Biosens Bioelectron; 2014 Nov; 61():336-43. PubMed ID: 24912033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.