These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 25686281)
1. Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Wang H; Ma N; Yan Z; Deng L; He J; Hou Y; Jiang Y; Yu G Nanoscale; 2015 Apr; 7(16):7189-96. PubMed ID: 25686281 [TBL] [Abstract][Full Text] [Related]
2. Direct Growth of a Polypyrrole Aerogel on Hollow CuS Hierarchical Microspheres Yields Particles with Excellent Electromagnetic Wave Properties. Zhang Z; Lv X; Cui G; Sui M; Sun X; Yu S Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961211 [TBL] [Abstract][Full Text] [Related]
3. Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. Wang H; Xiang L; Wei W; An J; He J; Gong C; Hou Y ACS Appl Mater Interfaces; 2017 Dec; 9(48):42102-42110. PubMed ID: 29131569 [TBL] [Abstract][Full Text] [Related]
4. A rational route towards dual wave-transparent type of carbonyl iron@SiO Zhang N; Wang Y; Chen P; Chen W J Colloid Interface Sci; 2021 Jan; 581(Pt A):84-95. PubMed ID: 32771752 [TBL] [Abstract][Full Text] [Related]
6. Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Gu H; Huang J; Li N; Yang H; Wang Y; Zhang Y; Dong C; Chen G; Guan H Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957129 [TBL] [Abstract][Full Text] [Related]
7. Carbonized zeolitic imidazolate framework-67/polypyrrole: A magnetic-dielectric interface for enhanced microwave absorption properties. Ur Rehman S; Sun M; Xu M; Liu J; Ahmed R; Aslam MA; Ahmad RA; Bi H J Colloid Interface Sci; 2020 Aug; 574():87-96. PubMed ID: 32305731 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. Xu P; Han X; Wang C; Zhou D; Lv Z; Wen A; Wang X; Zhang B J Phys Chem B; 2008 Aug; 112(34):10443-8. PubMed ID: 18681472 [TBL] [Abstract][Full Text] [Related]
9. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. Lü Y; Wang Y; Li H; Lin Y; Jiang Z; Xie Z; Kuang Q; Zheng L ACS Appl Mater Interfaces; 2015 Jun; 7(24):13604-11. PubMed ID: 26039802 [TBL] [Abstract][Full Text] [Related]
10. Facile Fabrication of Three-Dimensional Lightweight RGO/PPy Nanotube/Fe Zhang C; Chen Y; Li H; Tian R; Liu H ACS Omega; 2018 May; 3(5):5735-5743. PubMed ID: 31458773 [TBL] [Abstract][Full Text] [Related]
11. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of cobalt-zinc bimetallic oxides@polypyrrole composites for high-performance electromagnetic wave absorption. Feng S; Zhang H; Wang H; Zhao R; Ding X; Su H; Zhai F; Li T; Ma M; Ma Y J Colloid Interface Sci; 2023 Dec; 652(Pt B):1631-1644. PubMed ID: 37666195 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of ZnFe Liao Z; Ma M; Tong Z; Wang R; Bi Y; Chen Y; Chung KL; Ma Y J Colloid Interface Sci; 2021 Nov; 602():602-611. PubMed ID: 34146948 [TBL] [Abstract][Full Text] [Related]
14. Light-weight Gadolinium Hydroxide@polypyrrole Rare-Earth Nanocomposites with Tunable and Broadband Electromagnetic Wave Absorption. Wei W; Liu X; Lu W; Zhang H; He J; Wang H; Hou Y ACS Appl Mater Interfaces; 2019 Apr; 11(13):12752-12760. PubMed ID: 30848117 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti Liang L; Yang R; Han G; Feng Y; Zhao B; Zhang R; Wang Y; Liu C ACS Appl Mater Interfaces; 2020 Jan; 12(2):2644-2654. PubMed ID: 31854182 [TBL] [Abstract][Full Text] [Related]
16. Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance. Zhang L; Du J; Tang P; Zhao X; Hu C; Dong Y; Zhang X; Liu N; Wang B; Peng R; Zhang Y; Wu G Small; 2024 Sep; ():e2406001. PubMed ID: 39263765 [TBL] [Abstract][Full Text] [Related]
17. NiS Zhang Z; Lv Q; Chen Y; Yu H; Liu H; Cui G; Sun X; Li L Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159349 [TBL] [Abstract][Full Text] [Related]
18. Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. Ren YL; Wu HY; Lu MM; Chen YJ; Zhu CL; Gao P; Cao MS; Li CY; Ouyang QY ACS Appl Mater Interfaces; 2012 Dec; 4(12):6436-42. PubMed ID: 23176086 [TBL] [Abstract][Full Text] [Related]
19. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. Zhang XJ; Wang GS; Cao WQ; Wei YZ; Liang JF; Guo L; Cao MS ACS Appl Mater Interfaces; 2014 May; 6(10):7471-8. PubMed ID: 24779487 [TBL] [Abstract][Full Text] [Related]
20. In Situ Growth of Core-Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance. Yan L; Hong C; Sun B; Zhao G; Cheng Y; Dong S; Zhang D; Zhang X ACS Appl Mater Interfaces; 2017 Feb; 9(7):6320-6331. PubMed ID: 28120608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]