These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25686469)

  • 61. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.
    Gonzales GB; Smagghe G; Grootaert C; Zotti M; Raes K; Van Camp J
    Drug Metab Rev; 2015 May; 47(2):175-90. PubMed ID: 25633078
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Apical GLUT2: a major pathway of intestinal sugar absorption.
    Kellett GL; Brot-Laroche E
    Diabetes; 2005 Oct; 54(10):3056-62. PubMed ID: 16186415
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Controlling lipid bioavailability through physicochemical and structural approaches.
    McClements DJ; Decker EA; Park Y
    Crit Rev Food Sci Nutr; 2009 Jan; 49(1):48-67. PubMed ID: 18949598
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactions between Starch, Lipids, and Proteins in Foods: Microstructure Control for Glycemic Response Modulation.
    Parada J; Santos JL
    Crit Rev Food Sci Nutr; 2016 Oct; 56(14):2362-9. PubMed ID: 25831145
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A method for assessing real time rates of dissolution and absorption of carbohydrate and other food matrices in human subjects.
    Lentle RG; Sequeira IR; Hardacre AK; Reynolds G
    Food Funct; 2016 Jun; 7(6):2820-32. PubMed ID: 27228950
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fiber and physiological and potentially therapeutic effects of slowing carbohydrate absorption.
    Jenkins DJ; Jenkins AL; Wolever TM; Vuksan V; Brighenti F; Testolin G
    Adv Exp Med Biol; 1990; 270():129-34. PubMed ID: 1964001
    [No Abstract]   [Full Text] [Related]  

  • 67. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes.
    Breen DM; Rasmussen BA; Côté CD; Jackson VM; Lam TK
    Diabetes; 2013 Sep; 62(9):3005-13. PubMed ID: 23970519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intestinal Signaling of Proteins and Digestion-Derived Products Relevant to Satiety.
    Santos-Hernández M; Miralles B; Amigo L; Recio I
    J Agric Food Chem; 2018 Oct; 66(39):10123-10131. PubMed ID: 30056702
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Targeting gastrointestinal nutrient sensing mechanisms to treat obesity.
    Norton M; Murphy KG
    Curr Opin Pharmacol; 2017 Dec; 37():16-23. PubMed ID: 28802874
    [TBL] [Abstract][Full Text] [Related]  

  • 70. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract.
    Walther B; Lett AM; Bordoni A; Tomás-Cobos L; Nieto JA; Dupont D; Danesi F; Shahar DR; Echaniz A; Re R; Fernandez AS; Deglaire A; Gille D; Schmid A; Vergères G
    Mol Nutr Food Res; 2019 Nov; 63(21):e1900677. PubMed ID: 31483113
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control.
    Yin J; Cheng L; Hong Y; Li Z; Li C; Ban X; Zhu L; Gu Z
    Nutrients; 2023 Dec; 15(24):. PubMed ID: 38140339
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 1.3.4 Digestible and Non-Digestible Carbohydrates.
    Hojsak I
    World Rev Nutr Diet; 2022; 124():60-64. PubMed ID: 35240599
    [No Abstract]   [Full Text] [Related]  

  • 73. Phenomenological-Based model of human stomach and its role in glucose metabolism.
    Lema-Perez L; Garcia-Tirado J; Builes-Montaño C; Alvarez H
    J Theor Biol; 2019 Jan; 460():88-100. PubMed ID: 30315814
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A shift toward a new holistic paradigm will help to preserve and better process grain products' food structure for improving their health effects.
    Fardet A
    Food Funct; 2015 Feb; 6(2):363-82. PubMed ID: 25407943
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract.
    Jahan-Mihan A; Luhovyy BL; El Khoury D; Anderson GH
    Nutrients; 2011 May; 3(5):574-603. PubMed ID: 22254112
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Digestion-on-a-chip: a continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract.
    de Haan P; Ianovska MA; Mathwig K; van Lieshout GAA; Triantis V; Bouwmeester H; Verpoorte E
    Lab Chip; 2019 Apr; 19(9):1599-1609. PubMed ID: 30950460
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Slow-release carbohydrates: growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015).
    Vinoy S; Laville M; Feskens EJ
    Food Nutr Res; 2016; 60():31662. PubMed ID: 27388153
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modeling of glucose release from native and modified wheat starch gels during in vitro gastrointestinal digestion using artificial intelligence methods.
    Yousefi AR; Razavi SM
    Int J Biol Macromol; 2017 Apr; 97():752-760. PubMed ID: 28111297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bean amylase inhibitor and other carbohydrate absorption blockers: effects on diabesity and general health.
    Preuss HG
    J Am Coll Nutr; 2009 Jun; 28(3):266-76. PubMed ID: 20150600
    [TBL] [Abstract][Full Text] [Related]  

  • 80. New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels.
    Song YB; Lamothe LM; Esmeralda Nava Rodriguez N; Rose DR; Lee BH
    Food Chem; 2022 Jul; 383():132456. PubMed ID: 35182873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.