BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25686580)

  • 1. Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions.
    Snyman SJ; Hajari E; Watt MP; Lu Y; Kridl JC
    Plant Cell Rep; 2015 May; 34(5):667-9. PubMed ID: 25686580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase.
    Beatty PH; Shrawat AK; Carroll RT; Zhu T; Good AG
    Plant Biotechnol J; 2009 Aug; 7(6):562-76. PubMed ID: 19508275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase.
    Shrawat AK; Carroll RT; DePauw M; Taylor GJ; Good AG
    Plant Biotechnol J; 2008 Sep; 6(7):722-32. PubMed ID: 18510577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.
    Peña PA; Quach T; Sato S; Ge Z; Nersesian N; Dweikat IM; Soundararajan M; Clemente T
    Planta; 2017 Dec; 246(6):1097-1107. PubMed ID: 28801748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion.
    Mingossi FB; Matos JL; Rizzato AP; Medeiros AH; Falco MC; Silva-Filho MC; Moura DS
    Plant Mol Biol; 2010 Jun; 73(3):271-81. PubMed ID: 20148351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco.
    Phan TT; Sun B; Niu JQ; Tan QL; Li J; Yang LT; Li YR
    Plant Cell Rep; 2016 Sep; 35(9):1891-905. PubMed ID: 27316630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar partitioning in sprouting lateral bud and shoot development of sugarcane.
    Verma AK; Agarwal AK; Dubey RS; Solomon S; Singh SB
    Plant Physiol Biochem; 2013 Jan; 62():111-5. PubMed ID: 23208305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants.
    Coelho CP; Huang P; Lee DY; Brutnell TP
    Trends Plant Sci; 2018 Jan; 23(1):66-78. PubMed ID: 29056440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink.
    Chong BF; Bonnett GD; Glassop D; O'Shea MG; Brumbley SM
    Plant Biotechnol J; 2007 Mar; 5(2):240-53. PubMed ID: 17309679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings.
    Xu Z; Ma J; Qu C; Hu Y; Hao B; Sun Y; Liu Z; Yang H; Yang C; Wang H; Li Y; Liu G
    Sci Rep; 2017 Apr; 7():45933. PubMed ID: 28378825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.
    McAllister CH; Good AG
    PLoS One; 2015; 10(4):e0121830. PubMed ID: 25830496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Low-Nitrogen-Related miRNAs and Their Target Genes in Sugarcane and the Role of
    Gao S; Yang Y; Yang Y; Zhang X; Su Y; Guo J; Que Y; Xu L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene.
    Lian L; Wang X; Zhu Y; He W; Cai Q; Xie H; Zhang M; Zhang J
    Mol Biol Rep; 2014; 41(4):2189-97. PubMed ID: 24469712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactones affect the translocation of nitrogen in rice.
    Luo L; Wang H; Liu X; Hu J; Zhu X; Pan S; Qin R; Wang Y; Zhao P; Fan X; Xu G
    Plant Sci; 2018 May; 270():190-197. PubMed ID: 29576072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.
    Vicentini R; Felix Jde M; Dornelas MC; Menossi M
    Plant Cell Rep; 2009 Mar; 28(3):481-91. PubMed ID: 19096852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling.
    Bi YM; Kant S; Clarke J; Gidda S; Ming F; Xu J; Rochon A; Shelp BJ; Hao L; Zhao R; Mullen RT; Zhu T; Rothstein SJ
    Plant Cell Environ; 2009 Dec; 32(12):1749-60. PubMed ID: 19682292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Evaluation of Nutritional and Mineral Composition Between Transgenic Sugarcane Overexpressing
    Nur Sudrajat AB; Suherman ; Sugiharto B
    Pak J Biol Sci; 2020 Jan; 23(11):1424-1430. PubMed ID: 33274870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula.
    Ricoult C; Echeverria LO; Cliquet JB; Limami AM
    J Exp Bot; 2006; 57(12):3079-89. PubMed ID: 16899523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
    Corredoira E; Valladares S; Allona I; Aragoncillo C; Vieitez AM; Ballester A
    Tree Physiol; 2012 Nov; 32(11):1389-402. PubMed ID: 23086811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.
    Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.