These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25686598)

  • 1. [The utilization of brain plasticity by cochlear implants : Molecular and cellular changes due to electrical intracochlear stimulation].
    Rosskothen-Kuhl N; Illing RB
    HNO; 2015 Feb; 63(2):94-103. PubMed ID: 25686598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation.
    Rosskothen-Kuhl N; Illing RB
    PLoS One; 2014; 9(3):e92624. PubMed ID: 24647228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counter-regulation of the AP-1 monomers pATF2 and Fos: Molecular readjustment of brainstem neurons in hearing and deaf adult rats after electrical intracochlear stimulation.
    Rauch AK; Rosskothen-Kuhl N; Illing RB
    Neuroscience; 2016 Jan; 313():184-98. PubMed ID: 26601778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond.
    Illing RB; Reisch A
    Hear Res; 2006; 216-217():189-97. PubMed ID: 16624512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus.
    Argence M; Vassias I; Kerhuel L; Vidal PP; de Waele C
    Eur J Neurosci; 2008 Oct; 28(8):1589-602. PubMed ID: 18973578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem.
    Reisch A; Illing RB; Laszig R
    Exp Neurol; 2007 Dec; 208(2):193-206. PubMed ID: 17825819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pattern of Fos expression in the rat auditory brainstem changes with the temporal structure of binaural electrical intracochlear stimulation.
    Jakob TF; Döring U; Illing RB
    Exp Neurol; 2015 Apr; 266():55-67. PubMed ID: 25708983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The cochlear implant. Molecular arguments favouring early implantation].
    Jung C; Illing RB
    HNO; 2004 Nov; 52(11):1015-9. PubMed ID: 15801066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Impact of auditory deprivation on rats and plasticity expressionof growth associated protein-43 in auditory cortex].
    Shan S; Miao YH; Li XM
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Jun; 30(12):960-965. PubMed ID: 29771064
    [No Abstract]   [Full Text] [Related]  

  • 11. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS; Illing RB
    J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of hearing experience on signal integration in the auditory brainstem: a c-Fos study of the rat.
    Rosskothen-Kuhl N; Illing RB
    Brain Res; 2012 Jan; 1435():40-55. PubMed ID: 22177665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for microglial cells in reshaping neuronal circuitry of the adult rat auditory brainstem after its sensory deafferentation.
    Janz P; Illing RB
    J Neurosci Res; 2014 Apr; 92(4):432-45. PubMed ID: 24446187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory brainstem: development and plasticity of GAP-43 mRNA expression in the rat.
    Illing RB; Cao QL; Förster CR; Laszig R
    J Comp Neurol; 1999 Sep; 412(2):353-72. PubMed ID: 10441761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent plasticity in the adult auditory brainstem.
    Illing RB
    Audiol Neurootol; 2001; 6(6):319-45. PubMed ID: 11847462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening.
    Illing RB; Kraus KS; Meidinger MA
    Hear Res; 2005 Aug; 206(1-2):185-99. PubMed ID: 16081008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor modulation and expression in the rat auditory brainstem following electrical intracochlear stimulation.
    Illing RB; Michler SA; Kraus KS; Laszig R
    Exp Neurol; 2002 May; 175(1):226-44. PubMed ID: 12009775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem.
    Rosskothen-Kuhl N; Illing RB
    Brain Res; 2010 Aug; 1347():33-41. PubMed ID: 20570662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf.
    Gordon KA; Wong DD; Papsin BC
    Brain; 2013 May; 136(Pt 5):1609-25. PubMed ID: 23576127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.