These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25686900)

  • 1. Basic cerebrospinal fluid flow patterns in ventricular catheters prototypes.
    Galarza M; Giménez Á; Valero J; Pellicer O; Martínez-Lage JF; Amigó JM
    Childs Nerv Syst; 2015 Jun; 31(6):873-84. PubMed ID: 25686900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics.
    Galarza M; Giménez Á; Pellicer O; Valero J; Amigó JM
    Childs Nerv Syst; 2015 Jan; 31(1):37-48. PubMed ID: 25096070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis.
    Galarza M; Giménez Á; Valero J; Pellicer OP; Amigó JM
    Childs Nerv Syst; 2014 Jan; 30(1):105-16. PubMed ID: 23881424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational and experimental study of proximal flow in ventricular catheters. Technical note.
    Lin J; Morris M; Olivero W; Boop F; Sanford RA
    J Neurosurg; 2003 Aug; 99(2):426-31. PubMed ID: 12924722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation of ventricular catheters for hydrocephalus based on parametric designs.
    Galarza M; Giménez A; Amigó JM; Schuhmann M; Gazzeri R; Thomale U; McAllister JP
    Childs Nerv Syst; 2018 Feb; 34(2):267-276. PubMed ID: 28812141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Pellicer O; Valero J; Amigó JM
    Biomed Eng Online; 2016 Jul; 15 Suppl 1(Suppl 1):71. PubMed ID: 27455059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric study of ventricular catheters for hydrocephalus.
    Galarza M; Giménez A; Pellicer O; Valero J; Amigó JM
    Acta Neurochir (Wien); 2016 Jan; 158(1):109-15; discussion 115-6. PubMed ID: 26530709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile flow in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Thomale U; Schuhmann MU; Valero J; Amigó JM
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational fluid dynamics simulation framework for ventricular catheter design optimization.
    Weisenberg SH; TerMaath SC; Barbier CN; Hill JC; Killeffer JA
    J Neurosurg; 2018 Oct; 129(4):1067-1077. PubMed ID: 29125413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow ventricular catheters for shunted hydrocephalus: initial clinical results.
    Galarza M; Etus V; Sosa F; Argañaraz R; Mantese B; Gazzeri R; Montoya CG; de la Rosa P; Guerrero AL; Chaban G; Giménez Á; Amigó JM
    Childs Nerv Syst; 2021 Mar; 37(3):903-911. PubMed ID: 33123821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula.
    De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J
    ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and numerical simulation of blood removal from cerebrospinal fluid: comparison of lumbar drain to Neurapheresis therapy.
    Khani M; Sass LR; Sharp MK; McCabe AR; Zitella Verbick LM; Lad SP; Martin BA
    Fluids Barriers CNS; 2020 Mar; 17(1):23. PubMed ID: 32178689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
    Rispoli VC; Nielsen JF; Nayak KS; Carvalho JL
    Biomed Eng Online; 2015 Nov; 14():110. PubMed ID: 26611470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics.
    Tully B; Ventikos Y
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1644-51. PubMed ID: 19304478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventriculoperitoneal shunt flow dependency on the number of patent holes in a ventricular catheter.
    Ginsberg HJ; Sum A; Drake JM; Cobbold RS
    Pediatr Neurosurg; 2000 Jul; 33(1):7-11. PubMed ID: 11025415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve.
    Yano T; Funayama M; Sudo S; Mitamura Y
    Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resistance proximal "scaled" ventricular catheters.
    Qi D; Olson E; Ivankovic S; Sommer T; Nair K; Morris M; Lin J
    Childs Nerv Syst; 2022 Feb; 38(2):333-341. PubMed ID: 34654964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve.
    Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ
    J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus.
    Penn RD; Basati S; Sweetman B; Guo X; Linninger A
    J Neurosurg; 2011 Jul; 115(1):159-64. PubMed ID: 21275563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space.
    Gupta S; Soellinger M; Boesiger P; Poulikakos D; Kurtcuoglu V
    J Biomech Eng; 2009 Feb; 131(2):021010. PubMed ID: 19102569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.