These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25686900)

  • 21. Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissue obstruction in hydrocephalus.
    Harris C; Pearson K; Hadley K; Zhu S; Browd S; Hanak BW; Shain W
    Fluids Barriers CNS; 2015 Nov; 12():26. PubMed ID: 26578355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of intracranial dynamics in hydrocephalus: effects of viscoelasticity on the outcome of infusion tests.
    Bottan S; Schmid Daners M; de Zelicourt D; Fellner N; Poulikakos D; Kurtcuoglu V
    J Neurosurg; 2013 Dec; 119(6):1511-9. PubMed ID: 24010973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system.
    Cheng S; Jacobson E; Bilston LE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):151-7. PubMed ID: 18651281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of transport phenomena analysis technique to cerebrospinal fluid.
    Lam CH; Hansen EA; Hall WA; Hubel A
    J Neurosurg Sci; 2013 Dec; 57(4):317-26. PubMed ID: 24091435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of side-hole geometry on the performance of hemodialysis catheter tips: A computational fluid dynamics assessment.
    Owen DG; de Oliveira DC; Qian S; Green NC; Shepherd DET; Espino DM
    PLoS One; 2020; 15(8):e0236946. PubMed ID: 32764790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.
    Guyonvarch E; Ramin E; Kulahci M; Plósz BG
    Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does drainage hole size influence adhesion on ventricular catheters?
    Harris CA; McAllister JP
    Childs Nerv Syst; 2011 Aug; 27(8):1221-32. PubMed ID: 21476036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Tissue Motion Impacts Cerebrospinal Fluid Dynamics at the Cervical Medullary Junction: A Patient-Specific Moving-Boundary Computational Model.
    Pahlavian SH; Loth F; Luciano M; Oshinski J; Martin BA
    Ann Biomed Eng; 2015 Dec; 43(12):2911-23. PubMed ID: 26108203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional cerebrospinal fluid flow within the human ventricular system.
    Howden L; Giddings D; Power H; Aroussi A; Vloeberghs M; Garnett M; Walker D
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):123-33. PubMed ID: 18297492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin.
    Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R
    Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possible benefits of catheters with lateral holes in coronary thrombus aspiration: a computational study for different clot viscosities and vacuum pressures.
    Soleimani S; Dubini G; Pennati G
    Artif Organs; 2014 Oct; 38(10):845-55. PubMed ID: 24571089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of cyclic motion on coronary blood flow.
    Hasan M; Rubenstein DA; Yin W
    J Biomech Eng; 2013 Dec; 135(12):121002. PubMed ID: 24008675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced wall shear stress prevents obstruction by astrocytes in ventricular catheters.
    Lee S; Kwok N; Holsapple J; Heldt T; Bourouiba L
    J R Soc Interface; 2020 Jul; 17(168):20190884. PubMed ID: 32603649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biliary drainage catheters fluid dynamics: In vitro flow rates and patterns.
    Li AY; Ballard DH; D'Agostino HB
    Diagn Interv Imaging; 2017 Apr; 98(4):355-358. PubMed ID: 28040427
    [No Abstract]   [Full Text] [Related]  

  • 37. Number and location of drainage catheter side holes: in vitro evaluation.
    Ballard DH; Alexander JS; Weisman JA; Orchard MA; Williams JT; D'Agostino HB
    Clin Radiol; 2015 Sep; 70(9):974-80. PubMed ID: 26084555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles.
    Cheng S; Tan K; Bilston LE
    J Biomech; 2010 Feb; 43(3):579-82. PubMed ID: 19896132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recanalization of obstructed cerebrospinal fluid ventricular catheters using ultrasonic cavitation.
    Ginsberg HJ; Drake JM; Peterson TM; Cobbold RS
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS403-12; discussion ONS412. PubMed ID: 17041510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protocols to compare infusion distribution of wound catheters.
    Campolo M; Molin D; Rawal N; Soldati A
    Med Eng Phys; 2012 Apr; 34(3):326-32. PubMed ID: 21908225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.