BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25687000)

  • 1. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation.
    Tolga Demirtaş T; Kaynak G; Gümüşderelioğlu M
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():713-719. PubMed ID: 25687000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.
    Kaynak Bayrak G; Demirtaş TT; Gümüşderelioğlu M
    Carbohydr Polym; 2017 Feb; 157():803-813. PubMed ID: 27987994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment.
    Kim HM; Himeno T; Kawashita M; Kokubo T; Nakamura T
    J R Soc Interface; 2004 Nov; 1(1):17-22. PubMed ID: 16849149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds.
    Tunçay EÖ; Demirtaş TT; Gümüşderelioğlu M
    J Trace Elem Med Biol; 2017 Mar; 40():72-81. PubMed ID: 28159225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biomimetic Alternative to Synthetic Hydroxyapatite: "Boron-Containing Bone-Like Hydroxyapatite" Precipitated From Simulated Body Fluid.
    Calis M; Demirtas TT; Vatansever A; Irmak G; Sakarya AH; Atilla P; Ozgur F; Gumusderelioglu M
    Ann Plast Surg; 2017 Sep; 79(3):304-311. PubMed ID: 28430676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.
    Kim HM; Himeno T; Kokubo T; Nakamura T
    Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.
    Yan W; Zhang CY; Xia LL; Zhang T; Fang QF
    J Mater Sci Mater Med; 2016 Aug; 27(8):130. PubMed ID: 27379628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave irradiation enhances kinetics of the biomimetic process of hydroxyapatite nanocomposites.
    Guha A; Nayar S; Thatoi HN
    Bioinspir Biomim; 2010 Jun; 5(2):024001. PubMed ID: 20479524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of simulated body fluids in the presence of proteins.
    Zhao W; Lemaître J; Bowen P
    Acta Biomater; 2017 Apr; 53():506-514. PubMed ID: 28179158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids.
    Tas AC
    Biomaterials; 2000 Jul; 21(14):1429-38. PubMed ID: 10872772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).
    Rakngarm Nimkerdphol A; Otsuka Y; Mutoh Y
    J Mech Behav Biomed Mater; 2014 Aug; 36():98-108. PubMed ID: 24821139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution.
    Spence G; Patel N; Brooks R; Bonfield W; Rushton N
    J Biomed Mater Res A; 2010 Mar; 92(4):1292-300. PubMed ID: 19343778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol-gel method.
    Kaygili O; Keser S; Al Orainy RH; Ates T; Yakuphanoglu F
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():239-44. PubMed ID: 24411374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials.
    Li Z; Yubao L; Aiping Y; Xuelin P; Xuejiang W; Xiang Z
    J Mater Sci Mater Med; 2005 Mar; 16(3):213-9. PubMed ID: 15744612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants.
    Porter A; Patel N; Brooks R; Best S; Rushton N; Bonfield W
    J Mater Sci Mater Med; 2005 Oct; 16(10):899-907. PubMed ID: 16167098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite.
    Borkowski L; Sroka-Bartnicka A; Drączkowski P; Ptak A; Zięba E; Ślósarczyk A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():260-7. PubMed ID: 26952422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.