BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 25687015)

  • 21. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid.
    Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J
    J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties.
    Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C
    Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation.
    Azami M; Tavakol S; Samadikuchaksaraei A; Hashjin MS; Baheiraei N; Kamali M; Nourani MR
    J Biomater Sci Polym Ed; 2012; 23(18):2353-68. PubMed ID: 22244095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation.
    Morsi NM; Nabil Shamma R; Osama Eladawy N; Abdelkhalek AA
    Drug Dev Ind Pharm; 2019 May; 45(5):787-804. PubMed ID: 30672348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver-doped hydroxyapatite laden chitosan-gelatin nanocomposite scaffolds for bone tissue engineering: an
    Bhushan S; Singh S; Maiti TK; Chaudhari LR; Joshi MG; Dutt D
    J Biomater Sci Polym Ed; 2024 Feb; 35(2):206-227. PubMed ID: 37947007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization.
    Amrita ; Arora A; Sharma P; Katti DS
    Carbohydr Polym; 2015 Jun; 123():180-9. PubMed ID: 25843850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration.
    Dai Z; Dang M; Zhang W; Murugan S; Teh SW; Pan H
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1898-1907. PubMed ID: 31066314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization.
    Sagar N; Khanna K; Sardesai VS; Singh AK; Temgire M; Kalita MP; Kadam SS; Soni VP; Bhartiya D; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():700-14. PubMed ID: 27612764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration.
    Im O; Li J; Wang M; Zhang LG; Keidar M
    Int J Nanomedicine; 2012; 7():2087-99. PubMed ID: 22619545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.
    Ran J; Hu J; Sun G; Chen S; Jiang P; Shen X; Tong H
    Int J Biol Macromol; 2016 Dec; 93(Pt A):87-97. PubMed ID: 27568361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels.
    Wenz A; Tjoeng I; Schneider I; Kluger PJ; Borchers K
    Biotechnol Bioeng; 2018 Oct; 115(10):2643-2653. PubMed ID: 29981277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired self-healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin for growth-factor-free bone regeneration.
    Ma W; Yang M; Wu C; Wang S; Du M
    Int J Biol Macromol; 2023 Nov; 251():126145. PubMed ID: 37544566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering.
    Nabavinia M; Khoshfetrat AB; Naderi-Meshkin H
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():67-77. PubMed ID: 30678955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37°C.
    Takallu S; Mirzaei E; Azadi A; Karimizade A; Tavakol S
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1920-1929. PubMed ID: 30467948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering.
    Sagar N; Soni VP; Bellare JR
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):624-36. PubMed ID: 22323281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.