BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25687095)

  • 21. Assessment of antifouling efficacy of polyhedral oligomeric silsesquioxane based poly (urea-urethane-imide) hybrid membranes.
    Ajit Walter P; Muthukumar T; Reddy BS
    Lett Appl Microbiol; 2015 Sep; 61(3):274-82. PubMed ID: 26095545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices.
    Hui AY; Wang G; Lin B; Chan WT
    Lab Chip; 2005 Oct; 5(10):1173-7. PubMed ID: 16175276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.
    Zhang H; Bian C; Jackson JK; Khademolhosseini F; Burt HM; Chiao M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9126-33. PubMed ID: 24853631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption.
    Yu X; Xiao J; Dang F
    Langmuir; 2015 Jun; 31(21):5891-8. PubMed ID: 25966872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function.
    Toworfe GK; Composto RJ; Adams CS; Shapiro IM; Ducheyne P
    J Biomed Mater Res A; 2004 Dec; 71(3):449-61. PubMed ID: 15481053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-fouling microfluidic chip produced by radio frequency tetraglyme plasma deposition.
    Salim M; Mishra G; Fowler GJ; O'sullivan B; Wright PC; McArthur SL
    Lab Chip; 2007 Apr; 7(4):523-5. PubMed ID: 17389972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic coating of SU-8 microfluidic chips with phospholipid disks.
    Sikanen T; Wiedmer SK; Heikkilä L; Franssila S; Kostiainen R; Kotiaho T
    Electrophoresis; 2010 Aug; 31(15):2566-74. PubMed ID: 20603829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.
    Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A
    Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules.
    Pinto IF; Caneira CR; Soares RR; Madaboosi N; Aires-Barros MR; Conde JP; Azevedo AM; Chu V
    Methods; 2017 Mar; 116():112-124. PubMed ID: 27965121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.
    Martinelli E; Sarvothaman MK; Galli G; Pettitt ME; Callow ME; Callow JA; Conlan SL; Clare AS; Sugiharto AB; Davies C; Williams D
    Biofouling; 2012; 28(6):571-82. PubMed ID: 22702904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface modification for PDMS-based microfluidic devices.
    Zhou J; Khodakov DA; Ellis AV; Voelcker NH
    Electrophoresis; 2012 Jan; 33(1):89-104. PubMed ID: 22128067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.
    Logtenberg H; Lopez-Martinez MJ; Feringa BL; Browne WR; Verpoorte E
    Lab Chip; 2011 Jun; 11(12):2030-4. PubMed ID: 21409272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.
    Cho Y; Sundaram HS; Finlay JA; Dimitriou MD; Callow ME; Callow JA; Kramer EJ; Ober CK
    Biomacromolecules; 2012 Jun; 13(6):1864-74. PubMed ID: 22530840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers.
    Seo JH; Matsuno R; Konno T; Takai M; Ishihara K
    Biomaterials; 2008 Apr; 29(10):1367-76. PubMed ID: 18155763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.
    Gitlin L; Schulze P; Ohla S; Bongard HJ; Belder D
    Electrophoresis; 2015 Feb; 36(3):449-56. PubMed ID: 25257973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function.
    Nishikawa M; Yamamoto T; Kojima N; Kikuo K; Fujii T; Sakai Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1472-81. PubMed ID: 17969156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.