BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25687136)

  • 21. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Two-dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as High-performance CO2 Capture Sorbent.
    Zhang M; Liu L; He T; Wu G; Chen P
    Chem Asian J; 2016 Jun; 11(12):1849-55. PubMed ID: 27124013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor.
    To JW; He J; Mei J; Haghpanah R; Chen Z; Kurosawa T; Chen S; Bae WG; Pan L; Tok JB; Wilcox J; Bao Z
    J Am Chem Soc; 2016 Jan; 138(3):1001-9. PubMed ID: 26717034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface chemistry, porous texture, and morphology of N-doped carbon xerogels.
    Pérez-Cadenas M; Moreno-Castilla C; Carrasco-Marín F; Pérez-Cadenas AF
    Langmuir; 2009 Jan; 25(1):466-70. PubMed ID: 19209428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material.
    Kemp KC; Chandra V; Saleh M; Kim KS
    Nanotechnology; 2013 Jun; 24(23):235703. PubMed ID: 23669166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels.
    Fu R; Baumann TF; Cronin S; Dresselhaus G; Dresselhaus MS; Satcher JH
    Langmuir; 2005 Mar; 21(7):2647-51. PubMed ID: 15779927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.
    Saleh M; Chandra V; Kemp KC; Kim KS
    Nanotechnology; 2013 Jun; 24(25):255702. PubMed ID: 23708437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation.
    Nandi M; Okada K; Dutta A; Bhaumik A; Maruyama J; Derks D; Uyama H
    Chem Commun (Camb); 2012 Oct; 48(83):10283-5. PubMed ID: 22911327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.
    Saleh M; Tiwari JN; Kemp KC; Yousuf M; Kim KS
    Environ Sci Technol; 2013 May; 47(10):5467-73. PubMed ID: 23621280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microporous organic polymers involving thiadiazolopyridine for high and selective uptake of greenhouse gases at low pressure.
    Waseem Hussain MD; Bandyopadhyay S; Patra A
    Chem Commun (Camb); 2017 Sep; 53(76):10576-10579. PubMed ID: 28895961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ultra-microporous organic polymer for high performance carbon dioxide capture and separation.
    Sekizkardes AK; Culp JT; Islamoglu T; Marti A; Hopkinson D; Myers C; El-Kaderi HM; Nulwala HB
    Chem Commun (Camb); 2015 Sep; 51(69):13393-6. PubMed ID: 26214758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties.
    Li Z; Wu D; Liang Y; Xu F; Fu R
    Nanoscale; 2013 Nov; 5(22):10824-8. PubMed ID: 24077461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of ultramicropores in the remarkable gas storage in hypercrosslinked polystyrene networks studied by positron annihilation.
    Li Y; Liu J; Kong J; Qi N; Chen Z
    Phys Chem Chem Phys; 2021 Jun; 23(24):13603-13611. PubMed ID: 34114590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophobic Porous Polyketimines for the Capture of CO
    Xu C; Dinka E; Hedin N
    Chempluschem; 2016 Jan; 81(1):58-63. PubMed ID: 31968743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes.
    Yao Y; Ma C; Wang J; Qiao W; Ling L; Long D
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4817-25. PubMed ID: 25654564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activated carbon spheres for CO2 adsorption.
    Wickramaratne NP; Jaroniec M
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1849-55. PubMed ID: 23398600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrate-derived hydrothermal carbons: a thorough characterization study.
    Yu L; Falco C; Weber J; White RJ; Howe JY; Titirici MM
    Langmuir; 2012 Aug; 28(33):12373-83. PubMed ID: 22853745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microporous organic hydroxyl-functionalized polybenzotriazole for encouraging CO
    Yin Q; Lu C; Zhang S; Liu M; Du K; Zhang L; Chang G
    RSC Adv; 2019 Jul; 9(39):22604-22608. PubMed ID: 35519450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture.
    Wan L; Wang J; Feng C; Sun Y; Li K
    Nanoscale; 2015 Apr; 7(15):6534-44. PubMed ID: 25790196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.