These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 25687769)
1. Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology. Wilson CJ; Schuetz MA; Epari DR Biomech Model Mechanobiol; 2015 Oct; 14(5):1129-41. PubMed ID: 25687769 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study. Wehner T; Steiner M; Ignatius A; Claes L PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060 [TBL] [Abstract][Full Text] [Related]
3. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212 [TBL] [Abstract][Full Text] [Related]
4. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. Vetter A; Liu Y; Witt F; Manjubala I; Sander O; Epari DR; Fratzl P; Duda GN; Weinkamer R J Biomech; 2011 Feb; 44(3):517-23. PubMed ID: 20965507 [TBL] [Abstract][Full Text] [Related]
5. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus. Gardner TN; Mishra S; Marks L Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685 [TBL] [Abstract][Full Text] [Related]
6. Combined in vivo/in silico study of mechanobiological mechanisms during endochondral ossification in bone healing. Witt F; Petersen A; Seidel R; Vetter A; Weinkamer R; Duda GN Ann Biomed Eng; 2011 Oct; 39(10):2531-41. PubMed ID: 21692004 [TBL] [Abstract][Full Text] [Related]
7. Predicting the external formation of a bone fracture callus: an optimisation approach. Comiskey DP; MacDonald BJ; McCartney WT; Synnott K; O'Byrne J Comput Methods Biomech Biomed Engin; 2012; 15(7):779-85. PubMed ID: 21614706 [TBL] [Abstract][Full Text] [Related]
8. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation. Steiner M; Claes L; Ignatius A; Simon U; Wehner T J Orthop Res; 2014 Jul; 32(7):865-72. PubMed ID: 24648331 [TBL] [Abstract][Full Text] [Related]
9. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator. Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578 [TBL] [Abstract][Full Text] [Related]
10. Predicting the external formation of callus tissues in oblique bone fractures: idealised and clinical case studies. Comiskey D; MacDonald BJ; McCartney WT; Synnott K; O'Byrne J Biomech Model Mechanobiol; 2013 Nov; 12(6):1277-82. PubMed ID: 23306603 [TBL] [Abstract][Full Text] [Related]
11. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. García-Aznar JM; Kuiper JH; Gómez-Benito MJ; Doblaré M; Richardson JB J Biomech; 2007; 40(7):1467-76. PubMed ID: 16930609 [TBL] [Abstract][Full Text] [Related]
12. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. Ghiasi MS; Chen JE; Rodriguez EK; Vaziri A; Nazarian A BMC Musculoskelet Disord; 2019 Nov; 20(1):562. PubMed ID: 31767007 [TBL] [Abstract][Full Text] [Related]
13. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. Bailón-Plaza A; van der Meulen MC J Biomech; 2003 Aug; 36(8):1069-77. PubMed ID: 12831731 [TBL] [Abstract][Full Text] [Related]
14. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. Lacroix D; Prendergast PJ J Biomech; 2002 Sep; 35(9):1163-71. PubMed ID: 12163306 [TBL] [Abstract][Full Text] [Related]
15. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. Carter DR; Blenman PR; Beaupré GS J Orthop Res; 1988; 6(5):736-48. PubMed ID: 3404331 [TBL] [Abstract][Full Text] [Related]
16. Role of mechanical loading in the progressive ossification of a fracture callus. Blenman PR; Carter DR; Beaupré GS J Orthop Res; 1989; 7(3):398-407. PubMed ID: 2703931 [TBL] [Abstract][Full Text] [Related]
17. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study. González-Torres LA; Gómez-Benito MJ; Doblaré M; García-Aznar JM Med Eng Phys; 2010 May; 32(4):363-71. PubMed ID: 20202885 [TBL] [Abstract][Full Text] [Related]
18. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Andreykiv A; van Keulen F; Prendergast PJ Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123 [TBL] [Abstract][Full Text] [Related]
19. Mechanical conditions in the initial phase of bone healing. Epari DR; Taylor WR; Heller MO; Duda GN Clin Biomech (Bristol); 2006 Jul; 21(6):646-55. PubMed ID: 16513229 [TBL] [Abstract][Full Text] [Related]
20. Finite-Element Syntheses of Callus and Bone Remodeling: Biomechanical Study of Fracture Healing in Long Bones. Lipphaus A; Witzel U Anat Rec (Hoboken); 2018 Dec; 301(12):2112-2121. PubMed ID: 30290071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]