These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25687892)

  • 1. Toward an understanding of the function of Chlamydiales in plastid endosymbiosis.
    Ball SG; Colleoni C; Kadouche D; Ducatez M; Arias MC; Tirtiaux C
    Biochim Biophys Acta; 2015; 1847(6-7):495-504. PubMed ID: 25687892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blurred pictures from the crime scene: the growing case for a function of Chlamydiales in plastid endosymbiosis.
    Ball SG; Greub G
    Microbes Infect; 2015; 17(11-12):723-6. PubMed ID: 26384817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?
    Cenci U; Ducatez M; Kadouche D; Colleoni C; Ball SG
    Front Cell Infect Microbiol; 2016; 6():67. PubMed ID: 27446814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?
    Ball SG; Subtil A; Bhattacharya D; Moustafa A; Weber AP; Gehre L; Colleoni C; Arias MC; Cenci U; Dauvillée D
    Plant Cell; 2013 Jan; 25(1):7-21. PubMed ID: 23371946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis.
    Cenci U; Bhattacharya D; Weber APM; Colleoni C; Subtil A; Ball SG
    Trends Plant Sci; 2017 Apr; 22(4):316-328. PubMed ID: 28089380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic connectivity as a driver of host and endosymbiont integration.
    Karkar S; Facchinelli F; Price DC; Weber AP; Bhattacharya D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10208-15. PubMed ID: 25825767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plastid ancestor originated among one of the major cyanobacterial lineages.
    Ochoa de Alda JA; Esteban R; Diago ML; Houmard J
    Nat Commun; 2014 Sep; 5():4937. PubMed ID: 25222494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of primary plastids: a pas de deux or a ménage à trois?
    Baum D
    Plant Cell; 2013 Jan; 25(1):4-6. PubMed ID: 23371952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastid division in an evolutionary context.
    Tveitaskog AE; Maple J; Møller SG
    Biol Chem; 2007 Sep; 388(9):937-42. PubMed ID: 17696777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.
    Rolland N; Curien G; Finazzi G; Kuntz M; Maréchal E; Matringe M; Ravanel S; Seigneurin-Berny D
    Annu Rev Genet; 2012; 46():233-64. PubMed ID: 22934643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA functional signatures classify plastids as late-branching cyanobacteria.
    Lawrence TJ; Amrine KC; Swingley WD; Ardell DH
    BMC Evol Biol; 2019 Dec; 19(1):224. PubMed ID: 31818253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosymbiosis: double-take on plastid origins.
    Archibald JM
    Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.
    Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF
    Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.
    Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG
    Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosymbiosis and Eukaryotic Cell Evolution.
    Archibald JM
    Curr Biol; 2015 Oct; 25(19):R911-21. PubMed ID: 26439354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis.
    Ball S; Colleoni C; Cenci U; Raj JN; Tirtiaux C
    J Exp Bot; 2011 Mar; 62(6):1775-801. PubMed ID: 21220783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-like proteins in protozoa, metazoa and fungi imply universal plastid endosymbiosis.
    Yuan S; Guo JH; Du JB; Lin HH
    Riv Biol; 2010; 103(1):71-87. PubMed ID: 20882478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.