These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 25687907)
1. Targeted therapies: DNA polymerase θ-a new target for synthetic lethality? Killock D Nat Rev Clin Oncol; 2015 Mar; 12(3):125. PubMed ID: 25687907 [No Abstract] [Full Text] [Related]
2. DNA repair: Familiar ends with alternative endings. Cho NW; Greenberg RA Nature; 2015 Feb; 518(7538):174-6. PubMed ID: 25642961 [No Abstract] [Full Text] [Related]
7. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Kostyrko K; Mermod N Nucleic Acids Res; 2016 Apr; 44(6):e56. PubMed ID: 26657630 [TBL] [Abstract][Full Text] [Related]
8. Targeting the DNA Repair Enzyme Polymerase θ in Cancer Therapy. Schrempf A; Slyskova J; Loizou JI Trends Cancer; 2021 Feb; 7(2):98-111. PubMed ID: 33109489 [TBL] [Abstract][Full Text] [Related]
9. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres. Ahmed EA; Rosemann M; Scherthan H Health Phys; 2018 Jul; 115(1):102-107. PubMed ID: 29787435 [TBL] [Abstract][Full Text] [Related]
10. Downregulation of the cancer susceptibility protein WRAP53β in epithelial ovarian cancer leads to defective DNA repair and poor clinical outcome. Hedström E; Pederiva C; Farnebo J; Nodin B; Jirström K; Brennan DJ; Farnebo M Cell Death Dis; 2015 Oct; 6(10):e1892. PubMed ID: 26426684 [TBL] [Abstract][Full Text] [Related]
11. Regulation of homologous recombination at telomeres in budding yeast. Eckert-Boulet N; Lisby M FEBS Lett; 2010 Sep; 584(17):3696-702. PubMed ID: 20580716 [TBL] [Abstract][Full Text] [Related]
12. Assays to Study Repair of Inducible DNA Double-Strand Breaks at Telomeres. Oshidari R; Mekhail K Methods Mol Biol; 2018; 1672():375-385. PubMed ID: 29043637 [TBL] [Abstract][Full Text] [Related]
13. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Lydeard JR; Jain S; Yamaguchi M; Haber JE Nature; 2007 Aug; 448(7155):820-3. PubMed ID: 17671506 [TBL] [Abstract][Full Text] [Related]
14. Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Doksani Y; de Lange T Cell Rep; 2016 Nov; 17(6):1646-1656. PubMed ID: 27806302 [TBL] [Abstract][Full Text] [Related]
15. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Muraki K; Murnane JP Genes Genet Syst; 2018 Jan; 92(3):135-152. PubMed ID: 29162774 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Zelensky AN; Schimmel J; Kool H; Kanaar R; Tijsterman M Nat Commun; 2017 Jul; 8(1):66. PubMed ID: 28687761 [TBL] [Abstract][Full Text] [Related]
17. Cytogenetic Analysis of Telomere Dysfunction. Rai R; Multani AS; Chang S Methods Mol Biol; 2017; 1587():127-131. PubMed ID: 28324504 [TBL] [Abstract][Full Text] [Related]
18. Expression and Structural Analyses of Human DNA Polymerase θ (POLQ). Malaby AW; Martin SK; Wood RD; Doublié S Methods Enzymol; 2017; 592():103-121. PubMed ID: 28668117 [TBL] [Abstract][Full Text] [Related]
19. REV7/MAD2L2: the multitasking maestro emerges as a barrier to recombination. Sale JE EMBO J; 2015 Jun; 34(12):1609-11. PubMed ID: 25896508 [TBL] [Abstract][Full Text] [Related]
20. Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells. Du W; Amarachintha S; Wilson AF; Pang Q Sci Rep; 2016 Feb; 6():22167. PubMed ID: 26916217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]