These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 25688019)
1. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Medone P; Ceccarelli S; Parham PE; Figuera A; Rabinovich JE Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1665):. PubMed ID: 25688019 [TBL] [Abstract][Full Text] [Related]
2. Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi. Garrido R; Bacigalupo A; Peña-Gómez F; Bustamante RO; Cattan PE; Gorla DE; Botto-Mahan C Parasit Vectors; 2019 Oct; 12(1):478. PubMed ID: 31610815 [TBL] [Abstract][Full Text] [Related]
3. Modelling the climatic suitability of Chagas disease vectors on a global scale. Eberhard FE; Cunze S; Kochmann J; Klimpel S Elife; 2020 May; 9():. PubMed ID: 32374263 [TBL] [Abstract][Full Text] [Related]
4. Global Climate Change Effects on Venezuela's Vulnerability to Chagas Disease is Linked to the Geographic Distribution of Five Triatomine Species. Ceccarelli S; Rabinovich JE J Med Entomol; 2015 Nov; 52(6):1333-43. PubMed ID: 26336258 [TBL] [Abstract][Full Text] [Related]
5. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America. Carmona-Castro O; Moo-Llanes DA; Ramsey JM Med Vet Entomol; 2018 Mar; 32(1):84-101. PubMed ID: 28887895 [TBL] [Abstract][Full Text] [Related]
6. Sylvatic triatominae: a new challenge in vector control transmission. Guhl F; Pinto N; Aguilera G Mem Inst Oswaldo Cruz; 2009 Jul; 104 Suppl 1():71-5. PubMed ID: 19753461 [TBL] [Abstract][Full Text] [Related]
7. Feeding patterns of Triatoma infestans (Hemiptera: Reduviidae) in relation to transmission of American trypanosomiasis in Argentina. Wisnivesky-Colli C; Gürtler RE; Solarz N; Salomón D; Ruiz A J Med Entomol; 1982 Nov; 19(6):645-54. PubMed ID: 6818346 [No Abstract] [Full Text] [Related]
8. Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae). Rabinovich JE; Alvarez Costa A; Muñoz IJ; Schilman PE; Fountain-Jones NM PLoS Negl Trop Dis; 2021 Mar; 15(3):e0008822. PubMed ID: 33684127 [TBL] [Abstract][Full Text] [Related]
9. Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. Bender A; Python A; Lindsay SW; Golding N; Moyes CL PLoS Negl Trop Dis; 2020 Aug; 14(8):e0008411. PubMed ID: 32776929 [TBL] [Abstract][Full Text] [Related]
10. Seasonality and Temperature-Dependent Flight Dispersal of Triatoma infestans (Hemiptera: Reduviidae) and Other Vectors of Chagas Disease in Western Argentina. Di Iorio O; Gürtler RE J Med Entomol; 2017 Sep; 54(5):1285-1292. PubMed ID: 28605522 [TBL] [Abstract][Full Text] [Related]
11. Control measures for Chagas disease. Cruz-Pacheco G; Esteva L; Vargas C Math Biosci; 2012 May; 237(1-2):49-60. PubMed ID: 22450034 [TBL] [Abstract][Full Text] [Related]
12. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. Garza M; Feria Arroyo TP; Casillas EA; Sanchez-Cordero V; Rivaldi CL; Sarkar S PLoS Negl Trop Dis; 2014 May; 8(5):e2818. PubMed ID: 24831117 [TBL] [Abstract][Full Text] [Related]
13. Pattern of climate connectivity and equivalent niche of Triatominae species of the Phyllosoma complex. Moo-Llanes DA; Montes de Oca-Aguilar AC; Rodríguez-Rojas JJ Med Vet Entomol; 2020 Dec; 34(4):440-451. PubMed ID: 32697402 [TBL] [Abstract][Full Text] [Related]
14. The impact of Chagas disease control in Latin America: a review. Dias JC; Silveira AC; Schofield CJ Mem Inst Oswaldo Cruz; 2002 Jul; 97(5):603-12. PubMed ID: 12219120 [TBL] [Abstract][Full Text] [Related]
15. What Do We Know About Chagas Disease in the United States? Montgomery SP; Parise ME; Dotson EM; Bialek SR Am J Trop Med Hyg; 2016 Dec; 95(6):1225-1227. PubMed ID: 27402515 [TBL] [Abstract][Full Text] [Related]
16. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus. Pita S; Mora P; Vela J; Palomeque T; Sánchez A; Panzera F; Lorite P Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29695139 [TBL] [Abstract][Full Text] [Related]
17. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Mougabure-Cueto G; Picollo MI Acta Trop; 2015 Sep; 149():70-85. PubMed ID: 26003952 [TBL] [Abstract][Full Text] [Related]
18. Daily activity patterns of movement and refuge use in Triatoma gerstaeckeri and Rhodnius prolixus (Hemiptera: Reduviidae), vectors of the Chagas disease parasite. Wormington JD; Gillum C; Meyers AC; Hamer GL; Hamer SA Acta Trop; 2018 Sep; 185():301-306. PubMed ID: 29908170 [TBL] [Abstract][Full Text] [Related]
20. An overview of Chagas disease and the role of triatomines on its distribution in Brazil. Araújo CA; Waniek PJ; Jansen AM Vector Borne Zoonotic Dis; 2009 Jun; 9(3):227-34. PubMed ID: 19505252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]